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ABSTRACT
The fast affine projection (FAP) has been proposed re-
cently as a new adaptive filtering algorithm which pos-
sesses LMS like complexity but may achieve RLS like
convergence. In this work, we investigate the use of
FAP algorithms in subbands for acoustic echo cancela-
tion (AEC). To this end, some modifications are first
made on the FAP based on the consideration of the nu-
merical stability. The modified FAP algorithm is then
used in a complex adaptive subband filter structure for
AEC. Advantages of the resulting subband FAP over
the full-band NLMS scheme in terms of both complex-
ity and performance are demonstrated by simulations.

1. INTRODUCTION

Subband adaptive filtering has been an attractive ap-
proach for AEC in recent years. The well-known nor-
malized LMS (NLMS) algorithm has been widely used
for the subband adaptive algorithm because of its sim-
plicity. However, in the AEC context, the subband
NLMS algorithm exhibits some performance limits due
to its slow asymptotic convergence [1].

RLS-based algorithms have been also used in sub-
band AEC to improve the convergence {2]. However,
even though fast RLS algerithms are employed, their
computational requirements are still too expensive to
implement in typical AEC applications where a large
number of filter taps are needed. Furthermore, the
problem of numerical instability for fast RLS algorithms
will become more crucial for parallel subband filters
since higher risks will be brought in when multiple al-
gorithms are run synchronously. -

The affine projection algorithm (APA) [3] was first
proposed as a generalization of the NLMS algorithm.
In APA, the weight vector update is obtained from a
projection on an affine subspace with dimension L — N,
where L is the length of the filter and N is an integer.
By increasing the value of N to some extent, the con-
vergence speed of the weight vector will be improved.
Recently, a fast version of APA, the fast affine projec-
tion (FAP), was presented [4]. The complexity of FAP
is about 2L + 21N multiplications per sample, where N
can be chosen much smaller than L to achieve consider-
ablely faster convergence than NLMS. However, since a
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fast RLS algorithm is employed in the FAP, instability
will result in finite precision numerical computations.

In this paper, we investigate the use of the FAP
algorithm in subbands for the purpose of AEC. We
first make some modifications on the original FAP al-
gorithm so as to improve its numerical stability. This
modified FAP algorithm is then used in a multirate
subband structure for adaptive filtering. The result-
ing subband echo canceler shows excellent properties
in terms of both complexity and convergence perfor-
mance. ‘

2. THE MODIFIED FAP

2.1. The affine projection algorithm

The affine projection algorithm (APA) and the fast
APA algorithm (FAP) were originally derived for real
signals. Since the subband analysis filter bank used in
this study produces complex outputs, it is necessary to
formulate these algorithms in their complex versions.

Let h, € CT be the L-dimensional complex filter
weight vector at time n. The input signal z(n) is fil-
tered by h,,_; and subtracted from the echo disturbed
signal s(n) to get the residual error e(n):

e(n) = s(n) - h¥_ x, 1)

where x,, = [z(n),z(n — 1), ...,z(n — L + 1)]T and the
superscripts £ and # denote transposition and complex
conjugate transposition, respectively. Further define an
L x N signal matrix X, as:

Xn = [xn;xn—ly'",xn—(N—l)]y (2)

and let s, = [s(n),s(n — 1),...,s(n — N + 1)]T. The
complex version of the APA can be expressed as: :

en=sa-XThi, ()
P, =[XEx,+60 (4)
€ = pPpe; (5)

hn - h‘n—l + Xnen (6)

where J serves as the regularization parameter in com-
puting the inverse of the signal autocorrelation matrix
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{4), p is a scalar called the relaxation factor and the su-
perscript * denotes the complex conjugate. The weight
vector h, will converge when 0 < p < 2. Note that
when N = 1, e, reduces to e(n) and the above algo-
rithm becomes exactly the NLMS algorithm.

The complexity of the APA is 2LN + O(N?) multi-
plications per iteration. In [4], a (computationally) fast
algorithm for APA, the FAP, is developed that reduces
this complexity to 2L +21N. Some of the most impor-
tant ideas used in the derivation of the FAP algorithm
are summarized below.

The first one is to update e, via the following ap-

proximation:
- e(n)
on = [ (1~ B)ens ] o

where &, consists of the upper N — 1 elements of
e,-1. This approximation is valid for reasonable choices
of the value of é.

The second distinguishing feature of the FAP al-
gorithm is the use of the sliding window fast RLS al-
gorithm to calculate the forward and backward linear
predictors associated with the inverse of the matrix P,
(4), such that ¢, (5) can be calculated efficiently.

Another interesting idea in the FAP algorithm is
to avoid computing the weight vector h,, (6), which is
not the main concern in the AEC application. Instead,
another vector h,, is introduced which is connected to
h,, through the following equation:

h, = lAln. + I‘Xnﬁn (8)

where X,, consists of the N — 1 left-most columns of
X, and 9,, consists of the upper N — 1 element of 7,,,
which is an intermediate vector in CV and is updated

as:
= g, | e ©

The vector h,, can also be computed recursively:

ﬁ,, =hpoy + Un NXn—(N-1) (10)

where 9y, N is the Nth element of 7,,. :
Finally, the computation of the residual signal e(n)

can be obtained by substituting (8) into (1):
e(n) = s(n) — h¥_ x, — pn?_ X2 x,. (11)

Further simplifications in computing the last term on
the right-hand side of (11) can be made by introduc-
ing the vector r, = X} x,, which can be recursively
calculated as: ‘

rp =rp-1+ x(”)é:;q —z(n— L)E:——L—l (12)

where £, consists of the upper N — 1 elements of the
N-dimensional input signal vector §,,:

gn = [:l:('n),:z:(n - 1)) ...,.'z:(n -N+ 1)]T ) (13)
Note that &,, differs from x,, only by its length.
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2.2. Modifications on the FAP
In the FAP algorithm described above, the sliding win-

- dow fast RLS algorithm is needed to update P, (4) and

€n (5). As we mentioned before, the fast RLS algorithm
is sensitive to finite precision effects. The problem of
instability becomes more crucial for a set of subband
filters since higher risks will be brought in when multi-
ple algorithms are run synchronously. In our work, we
propose using the well-known matrix inverse lemma to
update P, (4), or equivalently, using the conventional
RLS algorithm, instead of using a fast version of the
latter.
To this end, we express the inverse of P, in (4) as

}n: e:eT 461 (14)

i=n~(L~1)

Pl=

A recursive expression for P! can be easily found as:

Pll=Qu-& rbn L (15)
Qn=PF1 +&06n (16)

Using the matrix inverse lemma in (15), we have
P, = Q_l - ﬂban , (17)

where b, = Q€5 _1, 8= (-1+¢7_;bn)~! and Q;?
can be obtained by applying the matruc inverse lemma
again to (16):

Q' = Pooy — canay (18)

where a, = P,_1£}, and a = (1 + £Ta,)"1.

The complexity of the above approach for updating
P, is 3N? 4 7N complex multiplications per iteration.
Since the value of N will be chosen much smaller than
L in the present AEC application, this will amount to
only a small part of the total computation cost.

Note that P! is an N x N sample covariance ma-
trix of the input signal based on a rectangular sliding
window of length L. Since the exponential window is
often used in the estimation of the signal covariance
matrix, the following alternate form of P7lis proposed
in [5]):

Bt = 2o\ igteT + o (19)

where 0 < A <'1is the forgetting factor of the exponen-
tial window. A similar recursive algorithm as above for
updating P,,'(19) can be obtained by using the matrix
inverse lemma (but only‘ence). The use of an expo-
nential window as in (19) is supposed to improve the
conditioning factor of the signal covariance matrix so
as to increase the stability of the matrix inverse [5].
However, in the subband filtering application of FAP
considered in this paper, we prefer not to use the expo-
nential windowing form (19) because of the difficulties
of selecting proper values of A for the different sub-
bands, as observed in our simulation work:
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Once P, is obtained, €, can be calculated as in (5).
If p is set to 1 in (7), a value often used in full-band
adaptive filters, (5) can be simplified as:

€n = pe(n)*Pu (20)

where P, ; is the first column of P,. We have found
experimentally that (20) can still be used to compute
€, when g is slightly different from 1 (say 0.7) with
little effects on the results.

The modified (complex) FAP algorithm that we pro-
pose to use in this study can now be summarized as
follows:

0. Initialization:

Po=4"'1, v0=0, 7,=0  (21)

1. Update P,:
an = P&, (22)
a=(1+¢Ta,)? (23)
On = Pn1&,_; (24)
b, = g — afaf€,_;)an (25)
B=(-1+&_1by)7" (26)

P, = P, — aaga — gb,b¥ (27)

2. Compute e(n):
I'n = Fp-1+ 21(")5;—1 —z(n - L)E:.—L—-l (28)
e(n) = s(n) — B30 = piigara  (29)

3. Update h, and /I

€n = pe(n)*Pp, (30)
N, = [ ﬁf_l } + €n (31)

l’:\‘n = lAln,—-l + WNn N¥pn—(N-1) (32)

The total complexity of the above algorithm is 2L+
3N? 4+ 12N multiplications per iteration. This amount
is close to that of the NLMS algorithm when N is much
smaller than L, as is the case in our applications.

3. USING THE MODIFIED FAP
ALGORITHM IN SUBBANDS

3.1. Subband FAP

The input signal x{n) and the echo signal s(n) are
all split into K subband signals by the analysis filter
banks. Each subband signal is then decimated by a fac-
tor M < K. In our application, uniform DFT banks
are used for the analysis/synthesis system. These are
implemented by the weighted overlap-add method [6],
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such that the subband signals at an arbitrary down-
sampling rate M can be produced efficiently. A suit-
able choice of M is somewhere between K/2 and K.

The subband signals at the output of the uniform
DF'T analysis bank satisfy a conjugate symmetric prop-
erty: the ith subband signal is the complex conjugate
of the (K + 2 —d)th for 1 < i < K/2 (assuming K
is even), while the first one and the (K /2 + 1)th one
are real signals. Thus, there are a total of K/2 + 1
independent subband signals: two real and K/2 — 1
complex. The modified FAP algorithm in Section 2.2
is used in all these K/2+ 1. The length of the adaptive
filters used in different subbands can be chosen differ-
ently, based on the consideration of the echo energy
distribution among the subbands.

We note that in a subband acoustical echo can-
celer, different algorithms could be used in different
subbands. In [2], a mixed structure is proposed where
a QR-RLS algorithm is used in lower frequency bands
due to the presence of higher echo level whereas the
NLMS algorithm is used in higher frequency bands.
One advantage of the FAP algorithm used here is that
it is possible to achieve this effect easily by choosing
different values of the parameter NV in the different sub-
bands. For example, we can set N = 1 (which corre-
sponds to the NLMS algorithm) in subbands with low
echo energy and use larger values of N in subbands
with higher echo energy.

3.2. Computational requirements

The total computational requirement of the subband
FAP algorithm consists of the following two parts.

The first part is associated to the analysis and syn-
thesis filtering. We have two analysis filter banks and
one synthesis bank. Each bank needs (J + Klog: K)
real multiplications per M input samples, where J is
the length (number of taps) of the prototype filters used
in the analysis and synthesis filters.

The second part is due to the adaptive filtering in
each subband. For simplicity, assume that the num-
ber of taps of all the subband filters is chosen equal
to L/M, where L is the length of the full-band adap-
tive filter, which is supposed to match the duration of
the echo path. Furthermore, the parameter N in the
subband FAP algorithms is assumed to be equal for all
subbands. Then, the bank of K /2 + 1 parallel subband
adaptive filters require 2(X — 1)(2L/M + 3N? 4+ 12N)
real multiplications every M input samples. Here, one
complex multiplication is assumed to be equal to 4 real
multiplications and K is even.

Thus, the total number of real multiplications per

every M input samples for the subband FAP algorithm
is:

E = 2(K —-1)(2L/M +3N* +12N) + 3(J + Klog: K) (33)

The computational gain of the subband FAP over the
full-band NLMS algorithm, which requires 2L real mul-
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tiplications per input sample, will be G = 2LM/E. Ex-
amples of the gain G will be given in the next section.

4. EXPERIMENTAL RESULTS

The room impulse response used in the simulations is
truncated to 1000 samples. Accordingly, the length
of the full-band adaptive filter can then be chosen as
L = 1000. Assume the number of subbands is K =
8 and the subband adaptive filters have equal length
L/M. The computational gain of the subband FAP
over the full-band NLMS, versus the subband down-
sampling rate M, are shown in Fig.1 for different values
of N.

The composite source signal (CCS) is first used as
the excitation signal of the adaptive echo canceler. Fig.
2 shows the residual echoes of the echo canceler when
the full-band NLMS and the subband FAP algorithms
are used. The input echo level is also shown in the
figure, where the echo-to-noise ratio (ENR) is 40 dB.
For the NLMS algorithm, the step size is set to p = 1.
For the subband FAP algorithm, the following param-
eters are used: downsampling rate M = 6, u = 1 and
§ = 202, where o2 is an estimate of the average power
of z(n). As shown in Fig 2, when we increase N from
N = 1 (NLMS) to N = 3, the convergence speed is
significantly improved, while the corresponding com-
plexity is only slightly increased.

The results of another set of simulations with a
speech signal are illustrated in Fig. 3. In this exper-
iment, a sudden change of room impulse response is
made at sample n = 14000, as indicated by the vertical
dashed line in Fig. 3. For subband FAP, N is set to 5,
which results in a computational gain G = 1.75. When
compared to the full-band NLMS algorithm, the sub-
band FAP algorithm demonstrates much better perfor-
mance in terms of both convergence rate and tracking
capability.
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Figure 1: Computational gain of subband FAP over full-band
NLMS.
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Figure 2: Residual echoes of subband FAP (N = 1,2,3) and
full-band NLMS with CSS as excitation. Subband number K =
8, downsampling rate M = 6 and ENR. = 40 dB.
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Figure 3: Residual echoes of subband FAP (N = 5) and full-
band NLMS with speech as excitation. Subband number K = 8,
downsampling rate M = 6 and ENR = 40 dB.
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