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ABSTRACT

The issue of rank estimation in subspace tracking al-

gorithms is adressed. In a recent paper, we proposed

a subspace tracking algorithm, the NA-CSVD. We now

extend the performance of NA-CSVD to rank tracking

by coupling it with a recently proposed rank tracking

technique. The paper includes an overview of typical

rank+subspace tracking algorithms which, along with

our proposed algorithm, are tested in various simula-

tion scenarios. The new algorithm tracks e�ciently the

rank and the signal subspace.

1 INTRODUCTION

Consider the exponentially weighted data matrix de-

�ned recursively as

A(k) =

� p
�A(k � 1)

x(k)H

�
(1)

where 0 < � < 1 is a forgetting factor, k is the time in-

dex and x(k) 2 CN�1 is the incoming measurement vec-

tor. The singular value decomposition (SVD) of A(k) is

A(k) = U(k)�(k)V (k)H , where V (k) is a N � N uni-

tary matrix, U(k) is a k �N matrix with orthonormal

columns which usually needs not to be computed, and

�(k) = diag(�1; � � � ; �N ) with �1 � �2 � � � � � �N . This

decomposition enables the real-time tracking of various

parameters, e.g. direction of arrival (DOA) of narrow-

band plane-waves impinging on an array of sensors, or

frequencies of sinusoids in additive receiver noise.

Let r represent the number of physical data sources

which generate the measurement x(k). Note that in

absence of noise, r is equal to the rank of the singu-

lar value matrix �(k), i.e. the number of non-zero di-

agonal entries of �(k). Accordingly, the right singu-

lar vectors, i.e. the columns of V (k), form the basis

vectors of two orthogonal subspaces, V = [VS jVN ] =
[v1; � � � ;vrjvr+1; � � � ;vN ], namely the signal subspace

(spanned by VS) and the noise subspace (spanned by

VN ).
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The quality of the parameter estimation depends di-

rectly on the quality of the subspace tracking, since the

singular vectors V (k) are further used by algorithms like

MUSIC or ESPRIT to extract the desired parameters.

In practical situations, the number of sources r may not

be constant; so, the parameters estimate depends also

on the estimation of r. Indeed, if r is over-estimated,

the complexity of the tracking algorithm increases, due

to the extra processing of unwanted random DOA es-

timates; and if r is under-estimated, the reduction of

the size of VS generally causes a bias in the parameters

estimate. So, a subspace tracking algorithm is really

complete only when it tracks both the subspaces and

the rank r.

In a recent paper [1], we proposed an O(Nr)-

complexity QR Jacobi-type subspace tracking algo-

rithm, the Noise Average Cross-terms Singular Value

Decomposition (NA-CSVD). We now extend the perfor-

mance of NA-CSVD to rank tracking by coupling it with

a technique recently intoduced by Kavcic et al. [2]. On

the issue of rank+subspace tracking methods, this paper

puts more emphasis on the rank tracking capabilities of

the algorithms. We �rst provide an overview of typical

rank+subspace tracking algorithms; then, these algo-

rithms are tested in various simulation scenarios. Sim-

ulation experiments show that our improved NA-CSVD

tracks e�ciently the rank and the signal subspace.

The paper is organized as follows: Section 2 presents

an overview of rank+subspace tracking methods, Sec-

tion 3 presents our new algorithm, simulations results

are in Section 4 and �nal remarks are provided in Sec-

tion 5.

2 OVERVIEW OF RANK+SUBSPACE

TRACKING TECHNIQUES

In this paper, we are interested in the case of non-

coherent sources only. In practical situations, the pres-

ence of noise in the data causes the rank of the singular

value matrix �(k) to be N , so that one generally tracks

the e�ective rank of �(k). Therefore, the number of

sources can be identi�ed by the knee-point where the

singular value spectrum falls to the noise oor. The



e�ective rank of �(k) is particularly hard to identify

when the signal-to-noise ratio (SNR) is low. Various

techniques have been developped to determine r even in

low SNR scenarios: threshold-based, MDL-type, proba-

bilistic ... The following is a broad but not exhaustive

overview of rank+subspace tracking algorithms.

A complex rank+subspace tracking algorithm consists

in performing an exact O(N3) SVD followed by the Min-

imum Description Length (MDL) method [3] to identify

the rank. MDL identi�es r by minimizing a criteria

parametrized by the approximate singular values; there-

fore, its performance strongly depends on the quality of

the tracking of the singular values.

Like many rank+subspace tracking algorithms,

Yang's PASTd-MDL [4] is a MDL-type algorithm. It

processes separately the subspace and the rank track-

ing. Indeed, if r is the estimated number of sources, the

PASTd algorithm tracks the r+1 largest singular values

f�1; � � � ; �r+1g and the corresponding singular vectors,

plus an average noise singular value ��N ; MDL is used to

estimate the rank at each iteration by using the singular

value spectrum f�1; � � � ; �r+1; ��N ; � � � ; ��Ng.
Subspace average 4 (SA4) [5] is another MDL-type

algorithm. Let R(k) = U(k)D(k)U(k)H be the EVD

of the sample correlation matrix R(k). SA4 tracks

the basis vectors and the average eigenvalues of four

sphericalized subspaces, as in U = [U1U2U3U4] =

[u1; � � � ;ur�1jurjur+1jur+1; � � � ;uN ]. The four average

eigenvalues ��1, ��2, ��3 and ��4 are then used in a modi�ed

MDL procedure (SA4-MDL) to estimate r.

The Invariant Subspace Updating (ISU) algorithm [6]

tracks the singular vectors by resolving a quadratic ma-

trix equation. Once the subspace basis vectors are es-

timated at time k � 1, the parameters, e.g. DOAs,

are extracted and the corresponding steering vectors are

gathered in a matrix B. If the number of sources has

increased between k � 1 and k, the measurement x(k)

contains a component which can not be expressed as a

linear combination of the steering vectors. This is de-

tected by observing the projection of x(k) on B. The

detection of a reduction of r is performed by identify-

ing which steering vector should be removed from B in

order to increase the norm of the projection of x(k) on

B.

Stewart's rank revealing URV [7] approximates the

SVD with the following decomposition

A(k) = U

�
S F

0 G

�
V H ; (2)

where V 2 CN�N , U 2 C k�N , S 2 C r�r and G 2
C (N�r)�(N�r) ; S and G are upper-triangular. The

smallest singular value of S approximates the rth singu-

lar value of A(k), and the frobenius norm of [FHGH ] is

compared to two adaptive thresholds to track the vari-

ations of r. The updating of an URV decomposition

is essentially made by Givens rotations which are ap-

plied in order not to destroy that speci�c structure. The

cross-product of the URV with its transpose provides a

correlation-based rank-revealing structure, the CRV de-

composition [8].

The Rank Adaptive Fast Subspace Tracking

(RAFST) [9] tracks a sphericalized URV decom-

position. The estimation of r is done by assuming that

the pdf of the sum of the noise singular values is

2

�2
noise

NX
i=r+1

�2
i

d

= �22(M�r)(N�r); (3)

where M = (1 � �k)=(1 � �) represents the e�ec-

tive window length, �2
noise

is the noise power, and

�2
2(M�r)(N�r) is a central chi-squared random variable

with 2(M � r)(N � r) degrees of freedom. Here, \
d

="

means equality in terms of pdf. Once the pdf is known,

the probability of false alarm (wrong choice of r) is ob-

tained. r is chosen in order not to get over a speci�ed

false alarm rate.

3 THE NA-CSVD/RSST SOLUTION

In [1], we proposed a QR Jacobi-type subspace track-

ing algorithm: the Noise Average Cross-terms SVD

(NA-CSVD). Using an approximate decomposition in

which �(k) is almost diagonal but not speci�cally upper-

triangular, NA-CSVD tracks the signal subspace plus an

extra average noise singular value. It uses exclusively

Givens rotations to zero the cross-terms entries of �(k)

and thus reduces the interaction between the signal and

the noise subspace. The tracking performance of NA-

CSVD has already been shown [1]. NA-CSVD was for-

merly formulated for subspace tracking only, assuming

that the rank remains constant.

Kavcic et. al [2] recently proposed an adaptive rank es-

timation technique for spherical subspace trackers which

we denote as RSST. It is a threshold-based method

which enables the tracking of the number of sources

with a parallel procedure. If r is the estimated num-

ber of sources at the previous iteration, RSST suggests

to track the r+1 largest singular values �1 � � � � � �r+1
as well as the average of the N � r � 1 smallest noise

singular values �� = 1

N�r�1

P
N

i=r+2
�i � �r+1. At each

time iteration, r is estimated by comparing �r and �r+1
with an optimal threshold computed so as to maintain

a low error probability.

In this paper, we merge NA-CSVD and RSST. To do

this, we retain only the QR step and the re�nement step

of NA-CSVD which we also modify so as to track an

extra singular value (�r+1). The new algorithm, NA-

CSVD/RSST, is presented in Table 1. Compared to

MDL-based algorithms, NA-CSVD/RSST has the ad-

vantage to have a tunable threshold. Indeed, if the

sources power are not constant, one must be able to

decide for the minimum power over which a source is

assumed to be present or not. NA-CSVD/RSST (and

ISU as well) o�ers such a exibility. NA-CSVD/RSST



Table 1: NA-CSVD/RSST algorithm

Initialization

r, f�1; � � � ; �r+1g,��N ,V = [v1; � � � ;vr+1]
T = ���N

Loop

for k = 1; � � � ;1
- vN = [I � V V H ]x(k)

- vN  vN=kvNk
- updating with the QR step and the

re�nement step of NA-CSVD

[V;vN ]
update! [V;v0N ]

f�1; � � � ; �r+1; ��Ng
update! f�1; � � � ; �r+1; ��0Ng

- ��N =
��0N+(N�r+2)

p
���N

N�r�1

- Dimension updating

if �r < T

��N =
�r+1+(N�r�1)��N

N�r

V  [v1; � � � ;vr ]
r  r � 1

elseif �r+1 > T

V  [V;v0N ]
�r+2 = ��N
r  r + 1

else

r is unchanged

end

- T = ���N
end

tracks e�ciently both the signal subspace and the rank,

as shown in the next Section. The complexity of NA-

CSVD/RSST is O(Nr).

4 COMPUTATION EXPERIMENTS

In all our experiments, we deal with the problem of esti-

mating the DOAs of plane waves impinging on an array

of N = 16 sensors. This is an application in which the

tracking of the exact number of sources is important.

We implemented the following rank+subspace track-

ing algorithms: Exact SVD/MDL, PASTd-MDL,

SA4, ISU, rank-revealing URV, RAFST and NA-

CSVD/RSST, as described in Sections 2 and 3. All

algorithms have the same initial conditions and in each

experiment, the internal parameters of each algorithm

(forgetting factor, thresholds, a priori noise power ... )

are individually tuned to obtain the best rank tracking

performance.

In the �rst experiment, we estimate the delays of de-

tection in sudden changes of the number of sources. The

simulation scenario consists in adding new sources and

later removing them. We compute the average delays to

detect the presence of new sources (�up) and the loss of

sources (�down). The average detection delays are listed

in Table 2, and the DOAs and rank estimates are in

Fig 1. A general comment is that we generally have

�up < �down. NA-CSVD/RSST has the shortest detec-

tion delays: �up = 0 and �down = 8. As observed ex-

perimentally, �down depends not only on the forgetting

factor, but also on the length of time during which the

sources have been present in the data set: the older the

source, the longer the detection delay.

Table 2: Delays of detection of sudden changes of r

Algorithm �up �down

NA-CSVD/RSST 0 8

Exact-MDL 0 41

URV 0.67 73

SA4-MDL 2 20

RAFST 2 42

ISU 4.33 38

PASTd-MDL 6 241

The next simulation tests the case of crossing sources.

It is well-known that when two sources get closer, the

e�ective rank of �(k) drops by one. We would like here

to estimate the period of time during which the number

of sources remain under-estimated. Two sources at �1 =

(10 + 0:01k) and �2 = (20 � 0:01k) cross at k = 500.

The gap of the \turbulence region" for each algorithm

are listed in Table 3, and the DOAs and rank estimates

are in Fig 2.

Table 3: gap of the \turbulence region" in the case of

crossing sources

Algorithm crossing (gap)

SA4-MDL 392

NA-CSVD/RSST 101

RAFST 260

PASTd-MDL 132

Exact-MDL 132

ISU 0

URV |

The main advantage of ISU is to be able to maintain

the number of sources to r = 2 in the crossing region,

even though one of the two estimated DOAs acts ran-

domly. This is due to the fact that ISU does not test di-

rectly the presence of sources, but evaluates the relative

closeness between the estimated angles and their previ-

ous estimation. In the case of URV, the many glitches

in the estimation of r are due to the di�culty to tune

the thresholds. An acceptable tuning of the thresholds

is obtained only after numerous guesses. As observed

experimentally, the wrong tuning of URV thresholds ei-

ther causes rank revealing URV to be unstable, or not to

update the subspaces frequently. Finally, An appropri-

ate tuning of � and � would enable NA-CSVD/RSST to

maintain r = 2 in the crossing region, but at the expense

of a decrease in the quality of the subspace tracking
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Figure 1: Detection delays of sudden rank changes.
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Figure 2: Rank+subspace tracking of crossing sources

performance. Nevertheless, NA-CSVD/RSST provides

a shorter crossing region than Exact-SVD/MDL.

5 CONCLUSION

Separating the rank tracking performance from the
subspace tracking performance of an algorithm is
not an easy task. The rank tracking performance
also depends on the tuning of various parame-
ters: forgetting factor (all algorithms), thresholds
(ISU,URV,NA-CSVD/RSST), a priori estimation of the
noise power (URV, RAFST). RAFST provides a good
subspace+rank tracking, but at the expense of a higher
complexity due to the computation of a complex dis-
tribution function. PASTd-MDL usually over-estimates
the rank if it is not well initialized, while ISU is unable
to deal with the case of r = 0. Also, like the URV,
ISU su�ers from the fact that two di�erent thresholds
have to be tuned. The stability of URV rank estimate is
hardly maintained. The tracking performance of SA4 is
altered by the average of eigenvalues particularly in the
case of fast moving sources. Finally, NA-CSVD/RSST
performs e�ciently in all the simulated scenarios, re-
quiring no a priori knowledge of the noise power and
having only one easy-to-tune threshold.
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