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ABSTRACT

The array output for a distributed source can

be approximated by the superposition of the
array response to a large number of closely
spaced point sources. In the limit, a distributed
source corresponds to an in�nite number of
point sources. In this approximation, the num-
ber of free parameters increases with the num-

ber of point sources. In this paper, we show
that if the point sources (approximation of a
distributed source) are related through some
parametric constraints, then for any observa-
tion at the array output, almost surely, there is

a unique solution for the localization problem,
provided that the dimensionality of the param-
eter space satis�es a certain bound. We show
this for both coherently and incoherently dis-
tributed sources.

1 Introduction

Recent literature in array processing shows a
growing interest in detection and localization of
distributed sources [4] [7] [5] [2]. Distributed

source modeling is invoked in many practical

situations. For instance, the lateral variation

of sound speed in water may cause energy dis-

tribution over an angular volume. In an un-
dersea echo beam sounder, the scattered signal

from the lower layers is modeled as a distributed
source [4]. Other examples are acoustic sources

in a reverberant room, tropospheric or iono-

spheric propagation of radio waves, reection
of low radio link signal from ground, and so on.

A distributed source can be approximated by a

large number of closely spaced point sources [4].

The approximation error decreases by increas-

ing the number of point sources and decreas-

ing their spacing. In the limit, a distributed

source corresponds to an in�nite number of
point sources. In this approximation, the num-
ber of free parameters increases with increas-
ing the number of point sources. If a classical
point source localization method, such as MU-

SIC, is applied to localize the point sources, a
unique solution may not be obtained due to a
limited number of sensors. In fact, for a unique
solution, the number of point sources must be
smaller than the number of sensors [9]. This is

an inherent ambiguity of the distributed source
modeling. Moreover, determining spatial exten-
sion using the point source location estimate is
not clear.

In [7], we present a parametric method for
localization of distributed sources in which

the source subspace, the signal subspace, and

the noise subspace are generalized and a two-
dimensional MUSIC-type spatial spectrum is
de�ned. The parameters of the sources are esti-

mated by locating the prominant peaks of this

spectrum. There, we assume that the number of

parameters is known. However, we do not dis-

cuss when the solution to the localization prob-
lem is unique. We simply assume that the num-

ber of parameters is small enough so that the
estimator provides a unique solution.

In the present work, we derive the su�cient

conditions for a unique localization of spatially

distributed sources. In [7], we propose that a
MUSIC-type algorithm might be used for dis-

tributed source localization if the angular kernel



of the distributed source belongs to a paramet-

ric class of functions. Here, we derive bounds on

the number of parameters required to represent

a distributed source. This bound can be used to

select a proper class for the angular density of

a distributed source. We use the concept of the

topological dimension of a set which is de�ned

as the number of free (real) parameters required

to describe all the elements of that set [3].

2 Problem Formulation

Consider an array of p sensors exposed to q spa-

tially distributed sources. The output of ith

sensor is given by

xi =
qX

j=1
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ai(�)s(�;  j)d� + ni (1)

where ai(�) is the response of the ith sensor to
a unit energy source at direction �, s(�;  j) is

the angular density of the jth source,  j is the
jth source location parameter vector, and ni is
the additive zero-mean noise at the ith sensor.
For uncorrelated sources the array covariance
matrix is

Rxx=
qX
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where

�(�; �0; j)
�
= Efs(�;  j)s(�

0;  j)g (3)

is the angular cross correlation of source m.

A source is called coherently distributed (CD), if
s(�;  j) is a random multiple of a deterministic

function g(�;  j) [7], i.e.

s(�;  j) = g(�;  j) (4)

where  is a random variable and g(�;  j) is

called the deterministic angular signal density.

Equation (4) indicates that the components of
received signal from a CD source at di�erent an-

gles are the delayed and scaled replicas of each

other.
If di�erent rays of signal which arrive at the ar-

ray are uncorrelated with each other, the source

is called an incoherently distributed (ID) source.

For an ID source, we have

Efs(�;  j)s
�(�0;  j)g = p(�;  j)�(�� �0) (5)

where p(�;  j) is the angular power density of

the source.

We will discuss the uniqueness problem sepa-

rately for the CD and ID source models. For

each case, a legitimate set is found which con-

tains all the signals that are chosen from the

paramteric class of the angular correlation ker-

nels. Every element in the legitimate set can be

a candidate for the localization problem. The

ambiguity set is a subset of the legitimate set
that contains all the signals that can generate

nonunique solutions to the localization problem.
The objective here is to �nd the conditions un-
der which the ambiguity set has a smaller di-
mension than the legitimate set. The approach
is similar to the one proposed in [6].

2.1 CD sources

Let the interval [��

2
; �
2
] be quantized into a grid

of ~q points. It is assumed that a distributed
source with the angular signal density g(�; ),
where  is an m-dimensional parameter vector,
is discretized so that it can take values on the

quantized grid. Initially, we consider a single
source scenario.

The output of an array of p sensors in a noise-
free environment for N snapshots can be repre-

sented by

X = AS( ) (6)

whereA is the p�~q location matrix of the array,

S( ) is the ~q�N source signal matrix, and X is

the p�N observation matrix. The signal matrix
can be expressed as S( ) = [s1( )S2( )] where

s1( ) is a ~q � 1 vector and S2( ) is a ~q� (N �

1) matrix. Similar to [8], we can show that it

su�ces to solve the uniqueness problem only for

x1 = As1( ): (7)

The source signal matrix s1( ) can be repre-

sented by

s1( ) = 1g( ) (8)



where g( ) is a ~q � 1 vector with the ith com-

ponent equal to the value of g(�; ) computed

at the location of the ith quantized DOA, and

1 is the square root of the power. The vectors

that satisfy (8) for all  , generate a set which

is called the legitimate set and is denoted by G.

Since it is assumed that there is a one-to-one

relationship between g( ) and  , we will need

m+2 real parameters to determine s1( ). Thus,

the dimensionality of G is equal to m+ 2.

A nonunique solution for the localization prob-

lem can be found if

x1 = As1( ) = As0( 0) (9)

or
A[1g( )� 0

1
g( 0)] = 0: (10)

The legitimate vectors that satisfy this equality
for any  and  0, form the ambiguity set which
is represented by D. To represent each vector
in the form of (1g( ) � 0

1
g( 0)), we need to

determine 2(m + 2) real parameters. However,
(10) shows that for the vectors in the ambigu-
ity set 2p constraints should be applied to their
parameters. Thus, the total number of parame-
ters that can be freely set to satisfy (10) is equal
to 2(m+ 2)� 2p. This is the dimensionality of

D.
Since s1( ) is a random vector, a unqiue solu-
tion for the localization problem can be found,
almost surely, if

dimfDg < dimfGg (11)

where dimf:g is the dimension operator. This

criterion is equal to

m < 2p � 2: (12)

Note that (12) is independent of ~q the number of

quantized sources. Thus, an in�nite number of

point sources (a distributed source) are localiz-
able if they are related through some parametric

constraints.
A multi-source case can be treated similarly

with an angular signal density equal to the ad-

dition of the angular signal density of the single
sources. For a multi-source scenario, the dimen-

sionalities of G and D are equal to q(m + 2)

and 2q(m+2)� 2p, respectively, where q is the

number of CD sources. Thus, the uniqueness

constraint implies that

q <
2p

m+ 2
: (13)

Note that for the point source case, m = 1 and

we have q < 2p=3, which is the well known su�-

cient condition for unique localization of coher-

ent point sources [9].

2.2 ID sources

The true correlation matrix is the limit of the

sample correlation matrix when the observa-
tion time tends to in�nity. The sample correla-

tion matrix is a Hermitian random matrix with
jointly Wishart distributed elements [1]. In the
sequel, we �nd the dimensionality of the true
correlation matrix, keeping in mind that it is
the limit of a random matrix. The error be-
tween the true and the sample correlation ma-

trices can be arbitrarily reduced by increasing
the observation time. We consider a subset of
the sample correlation matrices which generate
ambiguous solutions for the localization prob-
lem. Then, we show that this set converges into

a set that has a smaller dimension than the set
of all possible correlation matrices.

Such as for the CD case, assume that the in-
terval [��

2
; �
2
] is uniformly sampled into a grid

of ~q points. A distributed source with the an-

gular correlation kernel �(�; �0; ), where  is

an m-dimensional parameter vector, takes its

values on this grid in a noise-free environment.

Again, initially we assume a single source in a
noise-free environment. The correlation matrix

of the array output is shown as

Rx = ARsA
H (14)

whereA is the p�~q dimensional location matrix

of the array and Rs is the ~q� ~q correlation ma-

trix of the point sources. Since the point sources
are the samples of the distributed source, their

cross-correlation matrix satis�es

Rs = P( ) for some  2 	 (15)



where 	 is the parameter set and the com-

ponents of P( ) are the values of the angu-

lar correlation kernel of the distributed source,

�(�; �0; ), computed on the grid. All the cor-

relation matrices Rx that satisfy (14) with the

constraint (15) form the legitimate set G. Since

P( ) is a function of m+ 1 free (real) parame-

ters, the topological dimension of the legitimate

set is m+ 1.

Let us de�ne

F = AP( )AH �AP( 0)AH (16)

for some  and  0. The set of all matrices which

can be represenetd by (16) has dimensionality

2(m + 1). A nonunique solution for the DOA
estimation problem can be found if

F = 0: (17)

Note that for ID sources, P( ) is a diogonal
matrix. Thus, (17) provides p2 complex con-
straints with only p of them being independent.
The number of parameters that can be chosen
freely to satisfy (17) is equal to 2(m + 1) � p.

De�ne the ambiguity set as

D = fRx jAP( )A
H = AP( 0)AHg: (18)

The elements of D produce nonunique solutions
for the DOA estimator. The topological dimen-
sion of D is equal to 2(m + 1) � p. A unique

solution can be, almost surely, found for the lo-
calization problem if

2(m+ 1)� p < m+ 1 or m < p� 1: (19)

This suggests that distributed sources are unqi-

uely resolvable if they are chosen from a para-

metric class of angular correlation kernels with
the dimension of the parameter vector smaller

than the number of sensors.
A multi-source case can be treated similarly

with an angular correlation kernel equal to the

addition of the angular correlation kernels of the
single sources. In a multi-source case with q un-

correlated sources, the dimensionality of G and
D are equal to q(m + 1) and 2q(m + 1) � p,

respectively. The uniqueness criterion is then

given by
q(m+ 1) < p: (20)
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