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ABSTRACT

In this paper, we present a method for estimating the
signal sources steering vector using an arbitrary pla-
nar array with omnidirectional elements. The proposed
method improves the initial estimation of the signal
steering vector in two steps. In the �rst step of this algo-
rithm we minimize of the distance between the steering
vector and the signal subspace. The second step im-
proves the estimation of the �rst step using a de�ned
cost function which is based on a structural criterion for
signal steering vector. Simulation results show the ca-
pability of the proposed signal steering vector estimate
improvement.

1 INTRODUCTION

Adaptive beamforming is used to extract a desired signal
immersed in noise and interference. Several algorithms
in array processing are based on maximizing the array
output signal to interference and noise ratio (SINR). In
such cases, one should know the array steering response
in the direction of the desired source. Many reports have
indicated that a small error in the steering vector can
severely degrade the performance of the adaptive beam-
former. The error can induce a pattern with nulls in the
direction of the desired signal and accentuate sidelobes
in the direction of interference [1, 2, 3].
Steering vectors are directly related to the direction

of arrival (DOA) of the signals and can be used to either
estimate the DOAs or {if the DOAs are known a priori{
to calibrate the array [4]. Array steering vector error
occurs because of the DOA estimation error and/or ar-
ray geometry imperfection. Mechanical stroke, objects
in the near �eld, and temperature all a�ect calibration
precision.
Several robust array processing techniques have been

proposed in the literature. However, the methods exert
additional constraints on the weight vector, resulting in
a degradation on the produced pattern. Since in prac-
tice, maintaining a precisely calibrated array is di�cult,
steering vector estimation (SVE) is of interest [5, 6].
Here, we introduce a new method for improving the

SVE based on the eigen{decomposition of array output

correlation matrix. The proposed method minimizes the
distance between the true and estimated steering vec-
tors in two steps. The �rst step projects the erroneous
steering vector to the so{called signal subspace, and the
second step rotates and scales the result of the �rst step
to the direction of true steering vectors on the signal
subspace.

2 SIGNAL MODEL AND EIGENVECTORS

PROPERTIES

Consider a scenario with an L{omnidirectional ele-
ment planar array with arbitrary geometry receiving the
wavefronts of p narrowband point sources. The base-
band complex representation of the array output at each
snapshot is given by

x(k) = A(k)s(k) + n(k) (1)

where A = [a1 � � � ap] is the L� p steering matrix with
ai (for 1 � i � p) being the steering vector related to the
ith signal source, s is a p� 1 signal vector, and n is an
L�1 vector of spatially and temporally white noise with
variance �2. Non{white case can also be handled with
pre-whitening. We assume uncorrelated signals. Using
(1), the autocorrelation matrix of the array output is

R(k) = Efx(k)xH(k)g = A(k)�AH (k) + �2I; (2)

� = diag(1; � � � ; p): (3)

Diagonal elements of � represent the received power of
the signal sources.
Given N snapshots, the autocorrelation matrix can

be estimated as

R̂(k) =
1

N

N�1X

i=0

x(k � i)xH(k � i): (4)

The eigendecomposition of R has the following form

R =

LX

i=1

�iqiq
H
i = Qs�sQ

H
s +Qn�nQ

H
n ; (5)

where qis are the eigenvectors and �1 � � � ��p >
�p+1 = � � � = �L = � are the associated eigenvalues,



the columns of Qs = [q1; � � � ; qp] span the signal sub-
space and the columns of Qn = [qp+1; � � � ; qL] span the
noise subspace. The column span of the array manifold
matrix A is also the signal subspace. In other word,

A = QsK; (6)

where K 2 Cp�p with Cp�p being the p � p complex
vector space.

3 SIGNAL STEERING VECTOR IMPROVE-

MENT

Taking Â0 as an erroneous estimation of array manifold
matrix, we propose the following two{step algorithm to
improve the estimated signal steering vectors.

3.1 Step{1: Projection to Signal Subspace

Knowing that columns of A span the signal subspace,
we solve

min
Â1

jjÂ1 � Â0jj: (7)

S.T. Â1 in signal subspace.

Matrix Â1, being in the signal subspace, is equivalent
to Â1 = QsK1 where K1 2 Cp�p. Thus, minimization
(7) is equivalent to

min
K1

jjQsK1 � Â0jj: (8)

This minimization has the well{known least squares so-
lution

K1 = Qy
sÂ0 = (QH

s Qs)
�1QH

s Â0 = QH
s Â0; (9)

whereQy
s represents the pseudo{inverse ofQs (note that

QH
s Qs = I). Thus

Â1 = QsQ
H
s Â0: (10)

In fact, Â1 is the projection of Â0 onto the signal sub-
space, and thereby the noise subspace components of
the erroneous p steering vectors ~ai are removed.

3.2 Step{2: Rotation in Signal Subspace

In [7] we prove

AHQs(�s � �2I)�1QH
s A = ��1: (11)

Let us de�ne the cost function

	(Â) = jjÂHQs�
�1
s;NFQ

H
s Â� ��1jj2

= tr(ÂHQs�
�1
s;NFQ

H
s Â� ��1)2 (12)

where �s;NF
�
= �s��2I is the noise{free version of �s,

Â is an erroneous estimate of the steering vector, and
tr(.) represents the trace of matrix.

Let the estimate of the steering vector at Step 2 be rep-
resented by Â2. Taking into account that Â2 belongs
to the signal subspace, we can write

Â2 = QsK2: (13)

Thus, for the second step we seek for

K2 = K1 +�K: (14)

Within the above framework, we express K2 using the
gradient of (12) so as to reduce (12), as

K2 =K1 � �
@	(QsK)

@K

����
K=K1

: (15)

We can show that

@	(QsK)

@K

����
K=K1

= ��1
s;NFK1��

�1; (16)

where

���1 = ÂH
1 Qs�

�1
s;NFQ

H
s Â1 � ��1: (17)

Now, �nd �K such that

	(QsK2) = 0: (18)

It can be shown that the optimum � for the above con-
straint is

� =
	(Â1)

4tr[��1
s;NFQ

H
s A1���1AH

1 Qs�
�1
s;NF ]

; (19)

Thus
K2 = K1 � ���1

s;NFQ
H
s A1��

�1; (20)

and Â2 can be expressed as

Â2 = Â1�
	(Â1)Qs�

�1
s;NFQ

H
s Â1��

�1

4tr[��1
s;NFQ

H
s Â1���1ÂH

1 Qs�
�1
s;NF ]

: (21)

We use the following formula to estimate ���1

��̂�1 = (ÂH
1 Qs�

�1
s;NFQ

H
s Â1)�~I

�1; (22)

where~I is a p�p matrix with zero diagonal elements and
the rest of elements equal to 1, and � is the Hadamard
element{by{element multiplication.
In Fig. 1 a simpli�ed model of the proposed method is
shown.

4 SIMULATION EXPERIMENTS

For simulations, we have assumed an 8 element uniform
circular array (UCA) with the interelement spacing �=2
where � is the wavelength of the carrier frequency of the
received signal.
To simulate uncalibrated sensors, we use a randomly



displaced array. The array elements are distributed uni-
formly around the nominal position within the maxi-
mum distance r. Fig. 2 shows the position of the array
elements at ten di�erent trials using r = 0:08� (array
elements are shown by circles).
For simulations, two autocorrelation matrix are com-
puted, the �rst one is the exact R computed based on
(2), and the second one is the estimated autocorrelation
matrix using (4) with N = 20. The white noise power
is estimated from

�̂2 =
1

L� p

LX

i=p+1

�̂i; (23)

where f�̂ig is the set of eigenvalues of the sample corre-
lation matrix arranged in non-increasing order. White
noise was assumed at the output of all the array ele-
ments and three signals were received by the array with
the parameter summarized in Table 1.
We de�ne the following formula

Di =

�����

�����
A

jjAjj
�

Âi

jjÂijj

�����

�����

2

for i = 0; 1; 2 (24)

which we call the normalized proximity factor. Table 2
and Table 3 show the normalized proximity factors (Di

for i = 0; 1; 2) using di�erent values of random dis-
placement of the array elements (r) respectively for true
and estimated correlation matrix. A total of 4000 runs
were performed for each simulation.
As an application for the proposed method, consider

the minimum variance (MV) beamformer. In MV, the
array weight vector wi in order to extract the ith sig-
nal is computed as wi = R�1ai. Fig. 3 represents the
normalized beam pattern intended to extract the sig-
nal located at 180� applying the true and estimated R,
using initial, Step{1 ,and Step{2 steering vectors for a
typical case. Here r = 0:02�.
Table 4 and Table 5 summarize the noise gain (GN =
wHw), the produced gain in the direction of interfer-
ers (G1 and G3) and signal (G2), and the output SINR
(signal to interference and noise ratio) for the patterns
shown is Fig. 3. Here, we assume that the input SINR
is �10:09dB.

5 Conclusion

This paper has proposed a two{step algorithm for signal
steering vectors estimation. The approach assumes that
the signals are uncorrelated, number of signal sources
and the power of the received noise are known. The
proposed algorithm use the eigenvector decomposition
of the correlation matrix. In the �rst step of the al-
gorithm we project the steering vector onto the signal
subspace. The second step uses a cost function for mini-
mization. Simulation experiments show the e�ectiveness
of the method.
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Table 1: SOURCE PARAMETERS USED IN SIMULATIONS.

Source DOA Signal level SNR level

s1 50� -10dBm 0dB
s2 180� 0dBm 10dB
s3 250� 10dBm 20dB

Table 2: PROXIMITY FACTOR USING THE TRUE R IN
THE PROPOSED METHOD.

r (�) 0.02 0.04 0.08 0.16

D0 .00263 .01052 .04197 .16282
D1 .00100 .00394 .01541 .05665
D2 .00062 .00246 .00973 .03750



Table 3: PROXIMITY FACTOR USING ESTIMATED R IN
THE PROPOSED METHOD.

r (�) 0.02 0.04 0.08 0.16

D0 .00263 .01052 .04197 .16282
D1 .00228 .00523 .01675 .05820
D2 .00130 .00316 .01046 .03835

Table 4: GAIN AND SINR OF THE PRODUCED MV BEAM{
PATTERN USING TRUE R.

GN G1 (dB) G2 (dB) G3 (dB) SINRo (dB)

â0 0dB -18.722 -2.036 -32.959 7.694
â1 0dB -8.100 8.586 -27.649 17.358
â2 0dB -18.884 8.370 -55.774 18.313
a 0dB -32.924 8.754 -60.982 18.751

Table 5: GAIN AND SINR OF THE PRODUCED MV BEAM{
PATTERN USING ESTIMATED R.

GN G1 (dB) G2 (dB) G3 (dB) SINRo (dB)

â0 0dB -18.390 -5.032 -64.606 4.905
â1 0dB -8.772 8.600 -56.218 18.058
â2 0dB -19.368 8.314 -57.992 18.263
a 0dB -32.924 8.754 -60.982 18.751
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Figure 1: A simpli�ed geometrical representation of the
proposed method.
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Figure 2: Location of array elements in 10 independent
trials.
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Figure 3: Produced beam pattern using the MV
method, a) exact correlation matrix b) estimated corre-
lation matrix (maximum array elements position error
r = 0:02�).


