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ABSTRACT
This paper proposes a novel method for the design of per-

fect reconstruction (PR), discrete Fourier transform (DFT) modu-
lated oversampled filter banks (FB) for application in multi-carrier
transceiver systems. The PR property is guaranteed by enforcing
a paraunitary constraint on the polyphase matrix of the transmit or
receive sub-systems. The desired polyphase matrix is obtained via
embedding of lower dimensional paraunitary building blocks, each
expressed in terms of a limited set of design parameters through a
factorization based on Givens rotations. These parameters are ad-
justed to minimize the stop-band energy of the subband filters and
thus improve their spectral containment. The performance of the
proposed FB is investigated in a multi-carrier transceiver applica-
tion, where it is compared with OFDM and other recently proposed
FB structures. Numerical results show that the proposed approach
can lead to significant reduction in the bit error rate (BER), as com-
pared to the benchmark approaches, when used in the presence of
narrowband interference or frequency offset.

1. INTRODUCTION

Multicarrier modulation (MCM) is a method of transmitting a dig-
ital information sequence by splitting it into several components
and sending each of these over separate carrier signals. In recent
years, orthogonal frequency division multiplexing (OFDM), a form
of MCM, has become the physical layer of choice for many wireless
communication systems, e.g., IEEE 802.11, and IEEE 802.16. De-
spite its popularity, OFDM suffers from some important drawbacks
including poor spectral containment due to low side-lobe attenu-
ation, sensitivity to narrow-band noise [1], large peak-to-average
power ratio (PAPR) [2], sensitivity to Doppler shift and frequency
synchronization [3], and loss of efficiency caused by cyclic prefix.

As an alternative to OFDM, transceiver structures based on
more general filter bank (FB) decompositions can benefit from im-
proved spectral containment and thus provide an attractive approach
for MCM applications. In this method, the data on the transmitter
side is split into M parallel data channels, up-sampled by integer
K and passed through a bank of transmit subband filters; the filter
outputs are then summed and transmitted over the channel. At the
receiver, the noisy data are passed through a bank of M receive sub-
band filters, whose outputs are downsampled by K and equalized
as needed to remove channel effects; finally, the original informa-
tion sequence is reconstructed from the individually decoded data
sub-streams.

In the context of MCM, the perfect reconstruction property
refers to a situation where the output of the tandem combination
of the transmit and receive FBs (i.e. ideal channel) is a delayed
version of the input. Considering that in practice, non-ideal chan-
nels will introduce distortion and prevent the PR of the transmit-
ted signal, some researchers have investigated the design property
of nearly-perfect reconstruction (NPR) FBs for these applications
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[4, 5]. However, the NPR design may require the use of more
complex equalizers to combat intersymbol interference (ISI), which
adds to the system’s computational complexity [6]. In contrast, in
the case of large number of subcarriers in PR FBs, the channel in-
duced ISI can be easily removed by one-tap equalizer per subcar-
rier [7]. The main advantage for oversampled FBs (i.e. K > M)
over critically sampled ones (K = M) is that in the former case,
additional design freedom is available that can be used to obtain
additional spectral containment and hence, better noise immunity
within each subband. However, the use of oversampling leads to
increased redundancy, and loss of spectral efficiency. Therefore, to
remain competitive with existing OFDM systems, these redundan-
cies in oversampled FBs should not exceed that introduced by the
cyclic prefix in OFDM.

The main drawback of FB transceivers is their high complexity,
both from the implementation and design perspectives. Indeed, to
device an arbitrary M-channel FB transceiver, it is necessary to de-
sign and implement M transmit and M receive filters. To overcome
this limitation, a class of FBs known as DFT modulated has been
proposed [8, 9]. In this approach, the transmit and receive subband
filters are all derived from a single prototype filter, that can be more
efficiently designed due to the reduced number of free parameters.
In addition, computationally efficient implementation of the result-
ing FB structure are possible with the help of time synchronized
polyphase decompositions.

In this paper, we propose a design method for PR DFT modu-
lated overampled FB transceivers. It is shown that the PR property
of the transceiver is equivalent to the paraunitary requirement on its
polyphase matrix. This latter condition is enforced via embedding
of paraunitary building blocks which are parameterized by a factor-
ization in terms of Givens rotations. The FB design is formulated as
a minimization problem over these parameters, where the objective
function is the stop-band attenuation of the subband filters. The re-
sulting prototype filter benefits from excellent spectral containment,
that is high stop-band attenuation, and sharp transition band. In ad-
dition, unlike some other recently proposed methods, the oversam-
pling factor K in our approach need not be a multiple of M, nor it is
restricted to be even or odd; which provides additional design flexi-
bility. The bit error rate (BER) performance of the proposed FBs in
MCM transceiver applications is evaluated via extensive computer
experiments. The result show increase immunity of the new sys-
tem against narrowband interference (NBI) and colored noise, as
compared to OFDM. Furthermore, because it employs sharp filters
with much lower sidelobes, the proposed transceiver structure out-
performs ODFM and other recently proposed methods when used
in the presence of frequency offset.

The paper is organized as follows. Section 2 presents back-
ground information on PR DFT modulated oversampled FBs and
the structure of their polyphase matrices. The parameterization of
polyphase matrix and the proposed design method are developed in
Section 3. Section 4 is devoted to the presentation of experimental
results. Finally, Section 5 concludes the work. Regarding notations:
Bold-faced letters indicate vectors and matrices. The paraconjugate
operation on a matrix function P(z) is defined by P̃(z) =P(z−1)H ,
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Figure 1: DFT modulated oversampled filter bank transceiver
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Figure 2: Oversampled filter bank polyphase representation

where the subscript H denotes the conjugate transpose. IK denotes
the K×K identity matrix. We say that a is congruent to b modulo
m, or a≡ b(mod m), whenever a−b is divisible by m.

2. DFT MODULATED FILTER BANKS

The proposed transceiver structure is depicted in Fig. 1, where
xi[n] denote the transmitted data on the ith sub-channel. Pa-
rameters M and K represent number of subbands and upsam-
pling/downsampling factor, respectively; as explained before, we
consider oversampled FBs, where K > M. The transmission chan-
nel is modelled as an FIR filter with system function C(z); the
channel output is corrupted by additive noise η [m]. In DFT modu-
lated FBs, the transmit and receive sub-band filters can be derived
from common prototype filters of length D, with respective sys-
tem functions1 F0(z) = ∑

D−1
n=0 f0[n]z−n and H0(z) = ∑

D−1
n=0 h0[n]zn

of length D. In this work, D is restricted to be a multiple of M and
K, i.e. D = dMM = dKK, where dM and dK are positive integers.
We also denote by P as the least common multiple of M and K, and
therefore: D = dPP and P = pMM = pKK, with dP, pM and pK in-
tegers. Defining w = e− j2π/M , the transmit and receive filter for the
ith subband (i ∈ {1, . . . ,M−1}) are respectively obtained as

Fi(z) = F0(zwi), Hi(z) = H0(zwi)

2.1 Polyphase Representation
Let us consider the polyphase representation of the ith transmit filter
Fi(z):

Fi(z) =
D−1

∑
n=0

f0[n]w−inz−n =
K−1

∑
r=0

z−rPi,r(zK),

Pi,r(z) =
dK−1

∑
q=0

f0[Kq+ r]w−i(Kq+r)z−q.

We define the K×M transmit polyphase matrix P(z), as [P(z)]r,i =
Pi,r(z). Similarly, the ith receive filter Hi(z) admits the polyphase
representation

Hi(z) =
D−1

∑
n=0

h0[n]winzn =
K−1

∑
r=0

zrRi,r(zK),

Ri,r(z) =
dK−1

∑
q=0

h0[Kq+ r]wi(Kq+r)zq.

1For convenience in analysis, H0(z) is assumed non-causal; in practice,
causality can be restored simply by adding a delay of D− 1 samples in the
receiver.

We also define the M×K receive polyphase matrix R(z), with en-
tries [R(z)]i,r = Ri,r(z). Using the above polyphase matrix repre-
sentations in combination with Noble identities [10], the proposed
transceiver in Fig. 1 can be represented as depicted in Fig. 2.

Next, we consider the factorization of the polyphase matrices
P(z) and R(z) using an approach similar to that in [11, 8]. We begin
by defining the M×M DFT matrix W, with entries [W]i, j = wi j,
i, j ∈ {1, . . . ,M− 1}. We also define the block matrices L0 and
L1(z), of respective size D×M and K×D, as follows

L0 = [IM , IM , . . . , IM ]T ,

L1(z) = [IK ,z−1IK , . . . ,z−(dK−1)IK ].

Considering first the transmit FB, we represent the D coefficients
of the prototype filter F0(z) by means of diagonal matrix Γ f =

diag( f0[0], . . . , f0[D− 1]). Then, by using the fact wM+c = wc, we
can write

P(z) = L1(z)Γ f L0W = U(z)W (1)

where we define
U(z) = L1(z)Γ f L0 (2)

Proceeding as above, the following factorization can be devel-
oped for the receive FB: R(z) = W∗LT

0 ΓhL̃1(z), where Γh =
diag(h0[0], . . . ,h0[D−1]).

In this paper, we assume that the transmit and receive proto-
type filters are paraconjugate of each other, H0(z) = F̃0(z), which
in turns implies that the polyphase matrices of the transmit and
receive FB are also paraconjugate, i.e., R(z) = P̃(z) = W∗Ũ(z).
Consequently, if P(z) can be made paraunitary, then the PR prop-
erty of the transceiver system will be achieved since P(z)R(z) =
P(z)P̃(z) = IM . In this case, and assuming an ideal channel with
no receiver noise, i.e. C(z) = 1 and η [m] = 0, the output of each
subband on the receiver side will be an exact replica of the corre-
sponding subband input on the transmitter with some integer delay
d, or x̂i[n] = xi[n−d].

Finally, since WW∗ = IM , we note from (1) that the parauni-
taryness of P(z) will follow automatically from that of U(z). This
issue will be further addressed in Section 3, but first, we need to
express the entries of matrix U(z) in terms of the coefficient of the
prototype filter.

2.2 Structure of U(z)

We begin by partitioning the D×M matrix Γ f L0 into the following
format,

Γ f L0 = [FT
0 |FT

1 | . . . |FT
dK−1]

T ,

where matrices Fq, q ∈ {0, . . . ,dK − 1}, are of size K ×M with
entries

[Fq]i,r =

{
f0[qK + i] qK + i≡ r (mod M)
0 otherwise , (3)

Matrix U(z) (2) can then be expressed as

U(z) = L1(z)[FT
0 |FT

1 | . . . |FT
dK−1]

T =
dK−1

∑
q=0

Fqz−q.

Introducing the change the variable q = npK + α , where n ∈
{0, . . . ,dP−1} and α ∈ {0, . . . , pK −1}, we can rewrite U(z) as

U(z) =
dP−1

∑
n=0

pK−1

∑
α=0

FnpK+α z−npK−α .

Noting that pKK = P and P≡ 0 (mod M), we obtain from (3) that

[FnpK+α ]i,r =

{
f0[nP+αK + i] αK + i≡ r (mod M)
0 otherwise . (4)
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We note that given a pair of indices (i,r), [FnpK+α ]i,r is identically
zero except for possibly one specific value of α ∈ {0, . . . , pK − 1}
which, if it exists, is denoted as αi,r and satisfies

αi,rK + i≡ r (mod M), (5)

If this is the case, then it follows from (4) and (5) that

[U(z)]i,r = z−αi,r
dP−1

∑
n=0

f0[nP+αi,rK + i]z−npK ; (6)

otherwise [U(z)]i,r = 0. Finally, by denoting

Gi,r(z) =
dP−1

∑
n=0

f0[nP+αi,rK + i]z−n,

we can simplify equation (6) as

[U(z)]i,r = z−αi,r Gi,r(zpK ). (7)

3. PARAMETERIZATION OF PROTOTYPE FILTER

The design process starts with generating a parameterized matrix
U(z;θ) of the form (2), which is paraunitary. Then via (6), the
prototype filter coefficients f0[n;θ ] can be obtained. Finally, the
stop-band attenuation of this filter is minimized, based on the vec-
tor of parameters θ . Unfortunately, the elements of an arbitrarily
generated paraunitary matrix B(z) will not match the U(z) in (2).
B(z) must be restricted such that its components are compatible
with U(z). The exact way of realising this depends on whether M
and K are coprime.

3.1 M and K coprime
When M and K are coprime, pK = M and pM = K and a unique
αi,r in (5) exists for all the entries of U(z). We define two parau-
nitary matrices D0(z) = diag(zα0,0 ,zα1,0 , . . . ,zαpM−1,0) and D1(z) =
diag(zα0,0 ,zα0,1 , . . . ,zα0,pK−1). Therefore, entries of the product
D0(z)U(z)D1(z) can be written as

[D0(z)U(z)D1(z)]i,r = zαi,0 zα0,r [U(z)]i,r. (8)

Using the pairs (i,0), (0,r), and (i,r) in (5), we can show that

(αi,0 +α0,r−αi,r)K ≡ 0 (mod M).

Therefore, introducing α̂i,r = αi,0 +α0,r −αi,r, we have α̂i,rK ≡
0 (mod M). Thus, by using (7), we can rewrite equation (8) as

[D0(z)U(z)D1(z)]i,r = zα̂i,r Gi,r(zpK ).

Since 0 ≤ αi,r < pK , α̂i,r can take only two values, i.e. 0 and pK .
Accordingly, the entries of D0(z)U(z)D1(z) are polynomials in
zpK . It follows that when B(z) is an arbitrary matrix of order L
with entries [B(z)]i,r = ∑

L−1
n=0 bi,r[n]z−n,

D0(z)U(z)D1(z) = B(zpK ) or U(z) = D̃0(z)B(zpK )D̃1(z).

Hence each entry of U(z) can be represented as

[U(z)]i,r = z−αi,0−α0,r [B(zpK )]i,r

By using (6), we can write

[B(zpK )]i,r =
L−1

∑
n=0

bi,r[n]z−npK = zα̂i,r
dP−1

∑
n=0

f0[nP+αi,rK + i]z−npK

(9)

Depending on the value of α̂i,r, the coefficients of the prototype
filter for i∈ {0, . . . ,K−1}, r ∈ {0, . . . ,M−1}, and n∈ {1, . . . ,dP−
1}, can be retrieved as


α̂i,r = 0 ⇒

{
f0[nP+αi,rK + i] = bi,r[n]
f0[αi,rK + i] = bi,r[0]

α̂i,r = pK ⇒
{

f0[nP+αi,rK + i] = bi,r[n−1]
f0[αi,rK + i] = 0

(10)

Furthermore, the proper value of L can be determined to be dP−2.

3.2 M and K non-coprime

In this case, we can not find the proper αi,r that satisfy (5) for some
pair (i,r). Thus, the resulting U(z) consists of zero and non-zero
entries. Let τ denote as the greatest common divisor or τ = KM/P.
According to [12], the paraunitaryness of Ul(z), l ∈ {0, . . . ,τ−1},
which are defined as pM× pK submatrices of U(z), guarantees the
paraunitaryness of U(z). The structure of entries of each submatrix
Ul(z) inside U(z) is as follows

[Ul(z)]a,b = [U(z)]l+aτ,l+bτ ,

where these entries are provided by (6). It is straightforward to
show that for i = l +aτ and r = l +bτ , the congruence relation (5)
can be simplified to

αl+aτ,l+bτ pM +a≡ b (mod pK).

Because pK and pM are coprime, the pM × pK submatrices Ul(z)
can be expressed in a similar fashion to (9). Therefore, to map each
generated paraunitary matrix Bl(z) to the FB polyphase submatrix
Ul(z), we can use the following equation

Ul(z) = D̃0(z)Bl(z
pK )D̃1(z).

Note that when M and K are non-coprime, τ different matrices
Bl(z) should be generated.

3.3 Paraunitary Matrix Factorization

In order to maximize the spectral containment of the subband fil-
ters, generating a parameterized paraunitary matrix B(z) of size
pM × pK is required. To this end, we first generate a square
pM × pM paraunitary matrix ∆(z), then apply the transformation
B(z) = ∆(z)IpM×pK . With regards to generating ∆(z), the decom-
position for an pM × pM paraunitary matrix in terms of Givens ro-
tation as in [13] is used. For a paraunitary matrix of order L, this
decomposition can be written as

∆(z) = RLΛ(z)RL−1Λ(z) . . .R0.

Where Λ(z) = diag(IpM−rc ,z
−1Irc), with rc = bpM/2c and R j is a

unitary product of pM(pM−1)/2 Givens rotation matrices.

R j =
pM

∏
p=0

pM

∏
q=p+1

Gp,q

For each Givens rotation matrix Gp,q, one parameter θp,q is re-
quired [14], Due to the fact that there are pM(pM−1)/2 differ-
ent off-diagonal positions above the diagonal, the number of pa-
rameters required to construct a pM × pM paraunitary matrix is
(L+ 1)pM(pM−1)/2. We note that one of the advantages of our
method over [8] is the range of the parameters is limited to the in-
terval [0,2π].
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Method J(dB) First Sidelobe (dB)
Proposed -35.42 -34
DFT-OSFB [8] -35.29 -32
NPR-FB [4] -30.51 -72
OFDM -24.32 -13

Table 1: Spectral containment of different prototype filters

3.4 Optimization of Prototype Filter
The prototype filter coefficients f0[n;θ ] are optimized with respect
to the vector of parameters θ . One of the benefits of PR FB
transceiver is that in the process of filter design, the PR property
relaxes any flatness condition on the passband region of the fil-
ter. Since the prototype filters are paraconjugate of each other, the
pass band region of |F0(ω;θ)|2 is constant, where F0(ω;θ) is the
discrete-time Fourier transform (DTFT) of f0[n;θ ] [10]. Therefore,
good spectral containment can be achieved via minimization of the
stop-band energy of the filter, denoted as the cost function,

J(θ) =
1

2π

∫ 2π−ωs

ωs

|F0(ω;θ)|2dω, (11)

where ωs is the stop-band frequency. Since this optimization prob-
lem is a large-scale non-linear one, we used the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm[15], which is a quasi-Newton
method, for minimizing the cost function.

4. SIMULATION

4.1 Prototype Filter Design
We design a prototype filter for the transceiver system with M = 64
subbands, oversampling factor K = 72, and filter length D = 1728.
According to [8], for a given number of subbands M, better spectral
features are obtained if the upsampling factor K and the length of
the prototype filter D are increased. However, one must be careful
as a higher K will reduce the bandwidth efficiency of the system.
Likewise, a higher D will introduce more latency in the system and
increase its computational complexity. These factors must be bal-
anced carefully in order to maintain low latency, low computational
complexity, and high bandwidth efficiency while benefiting from
good spectral features.

Table 1 lists the stop-band attenuation J(θ) in (11) (when
ωs = π/M) and first sidelobe attenuation of the proposed proto-
type filter, the OSFB prototype filter with M = 64, K = 72 and
D = 1728 [8], the OFDM prototype filter with M = 64, and the
NPR-FB with M = 64, K = 64 and D = 1023 [4]. Fig. 3 shows the
frequency responses of these filters. Three key observations must
be pointed out: from Table 1, the stop-band energy of the proposed
scheme is the smallest among its counterparts; the transition from
passband to stop-band, i.e. the rolloff, is much steeper for all of
the FB approaches than for OFDM; the attenuations of the first two
sidelobes of the proposed scheme are, respectively, about 34 and 48
dB, whereas the attenuations of the first two sidelobes of the OFDM
system are 13 and 17 dB, respectively. These observations confirm
that the proposed FB offer considerably better spectral containment
than OFDM.

4.2 AWGN Channel
Fig. 4 shows the BER versus bit-energy-to-noise ratio (Eb/N0) in
the additive white Gaussian noise (AWGN) channel environment
for the following transceivers: proposed scheme, the NPR cosine
modulated FB [4], the OSFB transceiver in [8] and an OFDM sys-
tem as described above . For all of the systems, QPSK modula-
tion has been used for each of the subbands. To compare these
mentioned schemes fairly, the redundancy caused by oversampling
should be equal to the redundancy caused by cyclic prefix in OFDM
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Figure 3: Frequency response comparison
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Figure 4: AWGN channel

(That is, with M = 64 and K = 72, the length of cyclic prefix is set
to 8 in OFDM).

Therefore, the spectral efficiency is same over all of these
schemes. In this regard, the spectral efficiency is 128/72 bpcu (bit
per channel use). Fig. 4 shows that both of the PR FB schemes ex-
hibit a performance slightly better than NPR-FB and OFDM, when
AWGN contaminates the communication channel. In this case, the
simulated BER of the proposed scheme is indistinguishable to the
theoretical BER for full-band QPSK modulation.

4.3 Narrowband Interference

To generate the NBI, we passed a white noise sequence through
a narrow band-pass filter with a passband of width 2/M.This sim-
ple interference model is realistic for narrowband FM (eg. cordless
telephones), for low rate digital modulations, and for carrier feed
through [1]. It is known that OFDM performance can be easily
impaired by NBI. Due to the better spectral containment of the pro-
posed FB transceiver as compared to the OFDM, we expect a bet-
ter performance in the presence of NBI. In addition to NBI, white
noise was added to channel output with a power level adjusted for
BER= 10−3 as per results of Fig. 4. Fig. 5 shows the BER versus
bit-energy-to-NBI ratio (Eb/I) of the same transceivers as explained
in AWGN section. The results confirm that in this scenario, the
proposed scheme outperforms OFDM, with a difference of about
3dB for BER=10−2. However, at lower SIRs, the NPR-FB’s perfor-
mance is the best among different schemes, since NBI overshadows
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the distortion caused by NPR design and higher attenuation in side-
lobes plays a main role in combating NBI. Note that at SIRs higher
than 15dB, NPR distortion dominates and the NPR-FB has the high-
est BER.

4.4 Frequency Offset

It is known that sensitivity to frequency synchronization is one of
the disadvantages of OFDM [3]. Small frequency offset in the
OFDM receiver results in a reduction of useful signal amplitude,
loss of orthogonality between subcarriers and consequently inter-
carrier interference (ICI) from the neighbour subcarriers. Poor spec-
tral characteristics of OFDM filters is the reason of high BER in the
presence of frequency offset. Similarly, other MCM schemes are
vulnerable against frequency offset, since the subbands are tightly
spaced in the transmission bandwidth. To investigate this effect, we
consider a scenario in which the receive FB is not exactly synchro-
nized in frequency with the transmit FB. That is, we introduced a
constant frequency offset on all the tone received. This offset, de-
noted as ∆ f , is measured as percent frequency deviation, relative to
the width of a subband, i.e.intercarrier spacing. Fig. 6 shows the
BERs of all previously compared schemes versus SNR in AWGN
with ∆ f = 5%. As expected, the proposed transceiver outperforms
OFDM and NPR-FB by more than 0.5 dB gain. The result of ex-
periments for other values of ∆ f , e.g. 2% and 10%, follow the same
trend.

5. CONCLUSION

In this paper, we proposed a design method for PR DFT modulated
oversampled FBs transceivers. Paraunitary matrices were chosen
as the polyphase matrices of the transmit and the receive FBs to
ensure the PR property of the system. We were able to parame-
terize these matrices, based on factorization methods making use
of Givens rotations. By applying BFGS algorithm, the stop-band
energy attenuation of the prototype filters were minimized with re-
spect to the rotation parameters to obtain a good spectral contain-
ment. The resulting filters benefit from steeper transition from pass-
band to stop-band, lower stop-band energy, and lower in the side-
lobe level, when compared with OFDM and some recently proposed
FB transceivers. Numerical experiments show that the proposed FB
also enjoys lower BER in the presence of NBI or frequency offset.
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