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Abstract—As a well-established adaptation criterion, the max-
imum correntropy criterion (MCC) has received increased at-
tention due to its robustness against outliers. In this paper,
a new complex maximum correntropy criterion Volterra filter
(Volterra-CMCC) that does not need any a priori information
about the noise statistical characteristics, is proposed based on
the recursive scheme. We study the steady-state excess mean-
square-error (EMSE) behavior of the Volterra-CMCC algorithm
by using the energy conservation relation and Taylor series
expansion approach. Then, the proposed algorithm is applied to
the nonlinear channel equalization problem, where the channel
is contaminated by impulsive noise. The results obtained from
simulation study establish the effectiveness of this new Voltera-
CMC equalizer.

1. INTRODUCTION

Over the past decade, several improvements based on the I5-
norm have been developed to enhance the performance of the
recursive least square (RLS) algorithm [1], [2]. Nevertheless,
the Ily-norm type algorithms may fail to work when the
second-order moments of additive noise are infinite [3]. This
problem has been extensively investigated for the case of
physical channels, such as underwater acoustic communication
channel, VHF radio, and portable radio [4]-[6]. These studies
have shown that the additive noise in these scenarios can
be well modeled by the a-stable distribution [4]. The a-
stable distribution has no finite second-order or higher order
moments. Therefore, the performance of the RLS-based algo-
rithms deteriorate in the presence of a-stable noise.

For high data rate communication systems, the communica-
tion quality can suffer severely from intersymbol interference
(ISI), nonlinear distortions, and noise [7]. To compensate for
distortions and achieve reliable signal transmission (i.e., low
bit error rate (BER)), equalizers have been widely applied
in communication systems. In recent years, various nonlinear
equalization techniques have been reported [8]-[10]. In [9]
and [10], a kernel least mean square (LMS) algorithm based
on Wirtingers calculus and an augmented complex kernel
LMS based on widely linear estimation were proposed for the
nonlinear channel equalization problem. Note that the above-
mentioned kernel methods can be regarded as a generalization
of minimum mean square error (MSE) criterion. For non-
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Gaussian signals, the use of the MSE criterion is sub-optimal
as it does not take into account the effects of higher-order
moments.

Recently, the maximum correntropy criterion (MCC) has
received considerable attention in the signal processing liter-
ature [11]. The MCC provides a measure of local similarity
between two random variables and as such, shares a close
relationship with M-estimation [12]. Due to its simplicity and
low sensitivity to outlier noise samples, it has been widely
used recently as an underlying criterion in the design of robust
adaptive filtering schemes for various applications [13], [14].

In this paper, a new complex-valued recursive Volterra filter,
called Volterra-CMCC, is proposed by recursively minimizing
the MCC function. Moreover, the steady-state performance of
the Volterra-CMCC algorithm is analyzed. The proposed algo-
rithm is useful for nonlinear channel equalization, especially
when the signals contain large outliers or are contaminated
by impulsive noises. The improved performance of Volterra-
CMCC algorithm is confirmed in the context of nonlinear
channel equalization with a-stable noise.

II. PROBLEM FORMULATION

Fig. 1. Block diagram of an equalizer in digital transmission system.

Fig. 1 shows a discrete-time model of a communication
system, where transmission occurs over a nonlinear channel
and an adaptive equalizer is employed ar the receiver. The
error signal of adaptive equalizer can be defined as

e(n)

= s(n—=2)—y(n)
where s(n) is the transmitted signal (i.e., known training
sequence), d(n) = s(n — Z) is the desired or reference signal
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driving the adaptation, Z is the transmission delay related to
the communication channel, and y(n) is the equalizer output.

Nonlinear distortions considered in the channel during the
process of transmission are labeled as ‘Nonlinear channel’.
The nonlinear function is:

e(n) = &{s(n)} )

where £(n) denotes the channel output.
The input to the equalizer (corrupted signal) is defined as

z(n) =e(n) +v(n) 3)

where v(n) is the additive noise.

Considering the computational cost of the Volterra filter, the
second-order Volterra (SOV) expansion [15] is used in this
paper. The expanded input vector x(n) of the SOV filter is
expressed as

z(n) =[z(n),z(n —1),...,z(n — 1+ M),

linear kernels

z2(n),z(n)z(n —1),...,x%(n — 14+ M) @

quadratic kernels

where M denotes the length of the linear kernel. The length
of the second-order Volterra filter L can be calculated by
L = M (M + 3)/2. Thus input signal x(n) is passed into the
adaptive equalizer, which reduces the effect of channel and
recovers transmitted signals according to the received signal
samples. One important challenge comes from channel equal-
ization of impulsive noise. These impulsive noise processes
can be modeled as a-stable noise process which has no closed
form probability density function (PDF) expression. The char-
acteristic function of symmetric a-stable (Sa.S) distribution,
which is the Fourier transform of the PDF, can be described
by [4]

o(t) = exp {—7[t|*} )
where 0 < a < 2 denotes the characteristic exponent, and
denotes the dispersion parameter whose behavior is similar to
the variance of the Gaussian distribution. The small « indicates
the highly impulsive noise. Specially, if a« = 2, (5) becomes
the characteristic function of the Gaussian distribution.

III. DERIVATION OF THE VOLTERRA-CMCC ALGORITHM

Let D and Y be two random variables with the same

where E{-} stands for expectation. The MCC is a measure
of the similarity between two random variables, whose value
is mainly decided by the kernel function. Fig. 2 illustrates
the MCC cost function k(d,y) in the joint space of d and y.
For Gaussian kernel, the MCC divides space in three different
regions. When two points are close, the MCC behaves like an
l-norm distance in the Euclidean region. When two points are
getting apart, the MCC behaves like an /;-norm and eventually
like an lp-norm when two points are further apart [12]. This
property demonstrates robust performances of correntropy for
outliers. To achieve improved performance, the RLS-based
algorithms are usually preferred. Therefore, the cost function
of Volterra-CMCC can be defined as follows

n

Tn) = S A""ik(d(i),y(i,n))
i:i - i (i,n)e(i,n)* ©)
- 2no 1; A €xp {7 : 202 ; }

where 0 < A < 1 denotes the forgetting factor, and * is the
conjugate operation. The output signal y(i,n) and the error
signal e(4,n) can be expressed as

A (10)

an

where w(n) denotes the weight vector, and superscript H
denotes Hermitian operator (conjugate transpose). Taking the
gradient of 7°(n) with respect to the weight vector w(n), we
obtain

y(i,n) = w (n)x(7),

e(i,n) = d(i) — w (n)z(i)

Fig. 2. MCC cost function in the joint space.

or(n) _ _ _1_.
dimensions, the measure of correntropy is defined as [12] Ow*(n) —  20% 2
1 \n—i __e(i,n)e(i,n)” | de(i,n)e” (i,n) (12)
210 Z eXp 202 Owx(n) °
V(DY) =E{s(D,Y)} = [ £(d,y)dRp,y(d,y)  (6) i=1
Letting (12) b , t
where k(-,-) denotes a shift-invariant Mercer kernel, and etting (12) be zero, one gets
Rp,v(d,y) stands for the joint distribution function of (d, y). i N (i, n)a (i) (Dw(n) = i A"ip(i, n)ae(3)d* (4)
In this work, the kernel function in correntropy is chosen as ;=1 i=1
the following Gaussian kernel (13)
) where the weighting factors 1(i,n) is expressed as
—_1 |D=Y|
k(D,Y) = Ta=s XD {— 557 } @) o
b(i,n) = exp { — L n L (14)
where o stands for the kernel size. The cost function of the
MCC-based algorithms can be defined as follows [12] Then, the expression of w(n) is obtained as follows:
J(n)=E {exp (—%)} ®) w(n) = F(n)m(n) = R~ (n)m(n) (15)
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where F(n) = R='(n), R(n) — é A= (i, m)a (i) (i)
and 7w(n) = Z A =Up(i,n)d* (i) (i). For ¥(i,n) = 1, the

algorithm becomes the RLS algorithm. When (i,n) # 1,
R(n) and = (n) are the weighted autocorrelation matrix and
the weighted cross-correlation vector of the optimal weights
via ¥(i,n). We need to recalculate (15) at each iteration.
To avoid this inconvenience, a sliding window method is
proposed in [16]. However, the algorithm carries the main
drawback of sliding-window strategy: the algorithm needs
to keep in memory all previous samples within a window.
To overcome this drawback, R(n) and 7 (n) are updated by
recursive expression as follows:

~ Z A4, 1) (i) 2 (7)

(16)
=AR(n — 1) + ¥(n,n)x(n)z (n),

~ Z A" ip(4, 1) d* (1) (4)

:)\7_r(n — 1)+ ¢¥(n,n)x(n)d*(n).

An important point in (15)-(17) needs to be highlighted.
Note from (15-17) that the adaptation is similar to the Wiener
solution [14], which required matrix inverse operation. Hence,
(15) demands heavy computational costs and is seldom used
in practice. By using matrix inversion lemma [17], F(n) can
be expressed as

Fn)=X"'F(n-1)—

a7

A 1®(n)xf (n)F(n—1) (18)

where F(0) = p~'I, p is a small positive number, and the
gain factor is defined by ®(n) = 57 wﬂi{;}f{gﬁ@:ﬁ@w(n)
Thus, w(n) can be updated as '

=w(n—1)+ ®(n)[d*(n)

Remark I: Note that (14) and (19) demonstrate an implicit
relationship between w(n) and 1 (n,n) that cannot be solved
in one step. Hence, the algorithm requires an iterative approx-
imation to the solution, where 1(n,n) is calculated by using
w(n — 1), and the new value for w(n) is obtained via the
value of 1(n,n).

Remark 2: The proposed algorithm is nearly blind since it
does not require any priori information on the noise charac-
teristics, and it can be implemented using only o and A.

w(n) —zf(n)w(n —1)]. (19)

IV. STEADY-STATE PERFORMANCE ANALYSIS
In this section, we analyze the steady-state performance of
the Volterra-CMCC algorithm. Since the output of the Volterra
depends linearly on the coefficients of the filter itself, we
can use the method in [17], [18] for studying the steady-state
excess MSE (EMSE) of Volterra-CMCC algorithm.

Consider the desired response arising from the model
d(n) = wHx(n) 4 v(n) (20)

where w, is a vector containing the optimal coefficient values.
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Define the weight deviation vector as:

Q(n) = w, — w(n). (21

Then, some assumptions are given as

1) The input signal x(n) is independent and identically
distributed (i.i.d.) with zero-mean and is approximately inde-
pendent of the a priori excess errors e,(n) = = (n)Q(n—1).

2) The noise signal v(n) is i.id. with zero-mean and
variance o2.

3) v(n) and x(n) are mutually independent.

The adaptation of the weight deviation vector of the
Volterra-CMCC algorithm can be given by

Qn)=Qn—-1) - A+¢zpffzz7gg((s)17l()sﬁq))m(n)

d*(n) — 2 (n)w(n — 1)].

Considering (18), and applying the matrix inversion formula,
we have

(22)

= Aol + 3 Al (i)

Fl(n) @)z(i).  (23)

i=0

Then, (22) can be rewritten as
Qn) =Q(n—1) —I(n)F(n)z (n)e(n) (24)
where 9(n) = — L When the exponential

P(n,n) +EH(71)F(n—1)m(n)'

term is expanded with a second-order Taylor series, we obtain
— 1 _

V(") = SR e Tre R Tt 11 Seady
state, we define the a posterior error e,(n) = x (n)Q(n).
Multiplying both sides of (24) by x(n), we obtain the rela-
tionship between the a priori and the a posteriori estimation

€rrors

ep(n) = eq(n)

where ||:c||i = z*Ax stands for the squared-weighted Eu-
clidean norm of a vector. When x(n) # 0, the energy con-
servation relation (ECR) expression [17] for Volterra-CMCC
algorithm can be given as

- ||93(”)||i~(n)19(n) e(n) (25)

Q(n) + () F(n)z (n) ea(n) =

||m(”)|‘f9(n)p(n)

26)
1) 4 dFme ), (
Qn—1)+ Te oo © (n).
Combining (24) and (25), and using ¥~(n)F~1(n) as a

weighting matrix for the squared-weighted Euclidean norm of
a vector, we obtain

1€2(n) \\129—1(71)1?—
= [|€(n

_lea(m)*

Hm(")||39(n)F(n>

_ 1)H2 + M
9= (n)F~1(n) Hw(”)H?s(n)F(n) '

1) T
(n) @7)

Suppose the Volterra-CMCC algorithm converges. Therefore
in the steady state when n — oo the optimum (minimum)
EMSE can be obtained. Under this assumption the following
approximation can be made:
2
E{ 12152 rs ) ~

E{1920 = DI o))

(28)
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Taking expectations of both sides of (27), and substituting (28)
into (27) results in

lea (n)|? _ lep(n)]?
E { ] } =B { ] e } '

Now, substituting (25) into (29), we obtain that at steady state

(29)

B {(n) 13 oy oy [e(00) 2} = 2Re (B {5 (00)e(o0)})
(30)
where Re{z} denotes the real part of x. Consider e(n) =
eq(n) +v(n), (22) can be expressed as

2 2
2B {123 o0 poe) | + B {1205 ooy e lea(00) 2}
= 2E {|eq(o0)[*} .
(€29)
Assume that |\:c(n)||129(oo)F(oo) is independent of |e,(00)|? at
steady-state, we have

2B {2 ey | + E{ 20 rm0 ] 32
B {Jea(o)P} = 2B {Jea(o0)?}

Inserting (32) into (30), we obtain

fo?
5 g (33)
where ¢ £ E {|eq(00)|?} and 0 £ E{||x(n)||§(oo)F(oo)} -
E { (20%) ' Tr(z(n)z (n) F(0)) }
(202 —e(00)|2) TIA+(202) "1 Tr(z(n)xH (n) F(c0))

Recalling from (23), the steady-state mean value of F~1(n)
is obtained as F ' 2 li_>m E{F~'(n)} = W
The notation Q(n) stands for the covariance matrix Q(n) =
E{z(n)z" (n)}. According to the approximation in [17] and
using the second-order Taylor series, the following approxi-
mation can be made:

E{F(c0)} ~ (E{F~!(c0)})

~ B{20”—|e(o0)|*) 1} (1-XNQ ' (c0)
(202)71 :

§:

1 p o (1-0Q ()

E{exp(—ﬁ*‘e(;‘o)‘z )}

(34
For 0 < A < 1, we have |e,(n)| < |v(n)| in the steady-state.
Thus, substituting (34) and into (33), we have

_ oa(1-XNLy
ST oA - NIn

(35)

h — E 1 . E .
where 7 |:)\E((202—|v(n)2)1)(202_U(”)|2)+(1_A)L a

(35) is difficult to further simplify. The theoretical results
contain a random variable v(n), but after the expect operation,
we can obtain an exact value. Furthermore, (35) is also
applicable to the analysis of linear CMCC algorithm.

Here, we compare the computational complexity of the
Volterra-RLS algorithm and the proposed algorithm, as shown
in Table I. It is well known that the RLS algorithm requires
4M? + 12M — 1 real additions and 4M? + 16M + 1 real
multiplications for complex-valued signals. By using SOV
expansion, the Volterra-RLS algorithm requires M? + M
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TABLE 1
SUMMARY OF THE COMPUTATIONAL COMPLEXITY.

Volterra-RLS
Real additions 5M7 +13M — 1

Real multiplications 6M?2 + 18M + 1
Other operations 0

Volterra-CMCC
5M2 +17M + 1
6M> +26M + 7

1 exponential operation

Operation

real additions and 2M? + 2M real multiplications for com-
puting x(n). Therefore, the Volterra-RLS algorithm requires
5M?2 + 13M — 1 real additions and 6M? + 18 M + 1 real
multiplications in total. The proposed algorithm moderately
increases the computational complexity.

10 Volterra-CMCC
= = = Theoretical

SNR=10dB, =1

EMSE(dB)

. . . . .
0 500 1000 1500 2000 2500 3000
Iterations

Fig. 3. Theoretical and simulation learning curves for Volterra-CMCC
algorithm (A=0.99).

V. SIMULATION RESULTS

In this section, we conduct a series of simulations to
evaluate the performance of the Volterra-CMCC algorithm.
In the first part, we provide the theoretical validation of the
proposed algorithm. In the second part, we use simulations
to illustrate the effectiveness of the Volterra-CMCC algorithm
for nonlinear channel equalization and compare it with the
Volterra-RLS algorithm. All the simulation results shown in
this section are calculated over 100 independent runs.

A. Verification of EMSE

First, we perform simulation verification for the EMSE
formulas in context of nonlinear system identification for the
Volterra-CMCC algorithm. The input signal is the complex
white Gaussian signal (CWGN) with zero-mean and unit
variance, and the noise signal is the CWGN. Fig. 3 illus-
trates a comparison between the theoretical and simulation
results for Volterra-CMCC algorithm with signal-to-noise ratio
(SNR)=[10, 20, 30]dB. The unknown plant is a second-order
nonlinear system, which is presented by [19]. As shown in
Fig. 3, the theoretical results show a good match with the
simulations. In addition, the simulation and theoretical EMSE
values with different Volterra systems and noise environments
are given in Table II. The number of iterations used is 3000.
As can be seen, the simulation results agree quite well with
the theoretical results.
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TABLE 1T
EMSE FOR THE VOLTERRA-CMCC ALGORITHM (A=0.99).

Noise power  Kernel size  Filter order EMSE‘. —
Theory S ion
0.01 1 14 [18] —31.46dB —31.77dB
0.1 0.5 14 [18] —21.97dB —22.26dB
0.001 1.5 14 [15] —41.30dB —41.72dB
0.01 1 14 [15] —31.48dB —31.77dB

B. Application to nonlinear channel equalization

In second example, the performance of the Volterra-CMCC
algorithnm is examined in the context of nonlinear channel
equalization. To achieve good nonlinear modeling capabilities,
the SOV filter is used [15]. To compare the BER performance
of the Volterra-RLS and Volterra-CMCC algorithms fairly,
we change the forgetting factor so that they have the similar
convergence rate.

The SNR is defined as [15]

(&)

SNR = 2=
Y

(36)
where o2 denotes the power of the input vector.

The transmitted signal and channel output has the following
relationship:

x(n) =s(n) — 0.5s(n — 1) + 0.001s*(n)

+0.0025%(n — 1) + 0.007s(n)s(n — 1). G

The transmitted message is a 2—PAM signal. The character-
istic exponent « of the noise is set to 1.8. The length of the
SOV filter is set to L = 14 with the memory size of linear
kernels M = 4 and the memory size of quadratic kernels 10.
The BER performance of the algorithms in «-stable noise is
illustrated in Fig. 4. For all the equalizers the BER decreases
with SNR for nonlinear models. Again, the proposed algorithm
outperforms the Volterra-RLS equalizer.

—©— Volterra—RLS (4=0.999)
- =g=" Volterra—CMCC (\=0.999,6=1.5)
Volterra-CMCC (A=0.999,6=2)
—#— Volterra-CMCC (A=0.999,6=2.5)
Volterra-CMCC (1=0.999,6=3)

4 6 8 10 12 14 16 18 20
SNR(dB)

Fig. 4. BER performance of the equalizers.

VI. CONCLUSION
Based on the MCC, a new Volterra-CMCC algorithm, not
requiring any a priori information, is proposed along with a
Gaussian kernel for solving the nonlinear channel equalization
problem. The MCC, which has been proven to be a robust and
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efficient optimization criterion for outliers, is used to improve
the performance of equalizer. Moreover, we study the steady-
state behavior of the Volterra-CMCC algorithm. As compared
to the MSE-based criterion, the proposed algorithm achieves
superior performance. Simulation results verified the efficiency
of the proposed algorithm.
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