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ABSTRACT

In Bayesian short-time spectral amplitude (STSA) estimation for

single-channel speech enhancement, the spectral components are

traditionally assumed uncorrelated. However, this assumption is

inexact since some correlation is present in practice. We thus inves-

tigate a multi-dimensional STSA estimator that assumes correlated

frequency components. Since the closed-form solution of this op-

timum estimator is not readily available, we previously derived

closed-form expressions for an upper and a lower bound on the

desired estimator. In this paper, we study the proximity between the

upper and the lower bounds. Moreover, we propose a new family of

speech enhancement estimators that are derived from these bounds

and characterized by a scalar parameter 0 ≤ γ ≤ 1, with γ = 0
corresponding to the lower bound and γ = 1 to the upper bound.

Results using the wideband Perceptual Evaluation of Speech Quality

(PESQ) and Log-likelihood Ratio (LLR) measures as well as infor-

mal listening experiments show that the newly proposed estimators

achieve a better performance than existing estimators, especially at

high SNR.

Index Terms— Speech enhancement, Bayesian estimation,

short-time spectral amplitude

1. INTRODUCTION

Speech enhancement algorithms are used to remove background

noise in a speech signal. They are present in many common devices

such as cell phones and hearing aids. In the Baysian short-time spec-

tral amplitude (STSA) estimation approach [1], an estimator of the

clean speech is derived by minimizing the statistical expectation of

a cost function that penalizes errors in the clean speech estimate. In

this approach, it is always assumed that the different spectral com-

ponents of speech are uncorrelated so that the different frequency

components of the noisy speech can be processed independently.

The latter assumption is however inexact as there are some

sources of correlation between the spectral components [2]. Firstly,

the use of a finite window function in the short-time processing

introduces some correlation between adjacent frequency compo-

nents. This is due to the spectral smearing phenomenon which is

a known effect of the windowing process [3]. Secondly, voiced

speech is characterized by the vibration of the vocal cords at a fun-

damental frequency F0 and has several harmonics at multiples of

F0 [4]. The frequencies corresponding to these different harmonics
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will therefore be inherently correlated. The estimators following the

traditional uncorrelated approach are thus sub-optimal. Correlated

frequency components in Bayesian STSA estimation has apparently

not been considered by other authors in the recent speech and audio

litterature.

We investigate a multi-dimensional Bayesian STSA estimator

that considers the spectral components to be correlated. Since a

closed-form solution for such an estimator is not readily available,

we previously developed closed-form expressions for a lower and an

upper bound on the desired estimator [5]. Here, we study the prox-

imity between the upper and lower bounds. Moreover, we propose a

new family of speech enhancement estimators that are derived from

these bounds and characterized by a scalar parameter 0 ≤ γ ≤ 1,

with γ = 0 corresponding to the lower bound and γ = 1 to the upper

bound. Knowledge of the clean speech and noise correlation matri-

ces is needed to implement the proposed estimators. Since speech is

mostly correlated in voiced parts, we also modify the clean speech

correlation matrix to give it a full structure in voiced sections and

a diagonal structure in unvoiced sections. Informal listening experi-

ments as well as results using the wideband Perceptual Evaluation of

Speech Quality (PESQ) and Log-likelihood Ratio (LLR) measures

show that the proposed estimators achieve better performance than

the benchmark estimators for several noise types and signal-to-noise

ratio (SNR) conditions.

The paper is organized as follows. In Section 2, we briefly de-

scribe the bounds derived in [5] and present the proposed family of

estimators. Section 3 studies the proximity between the upper and

lower bounds and addresses the estimation of the associated correla-

tion matrices. Section 4 presents the experimental results and Sec-

tion 5 concludes the work.

The following notation is used in this article: for any vector A =
[ak] ∈ R

N×1 and any positive real α, we define A
[α] = [aα

k ]; for

any vector A ∈ C
N×1, we define |A| = [|ak|]; for any matrix

A ∈ C
N×N we define diag{A} as the column vector containing

the diagonal elements of matrix A; IN is the N ×N identity matrix.

2. MULTI-DIMENSIONAL FAMILY OF STSA

ESTIMATORS ALLOWING CORRELATED FREQUENCY

COMPONENTS

In this section, we proceed to obtain the family of multi-dimensional

clean speech STSA estimators that assume correlated frequency

components.

Let Yi = Xi + Wi be an N -dimensional column vector rep-

resenting the short-time Fourier transform (STFT) coefficients of

noisy speech observations for time frame i. Xi and Wi are respec-



tively the clean speech STFT vector and the noise STFT vector. To

simplify the notation, we will usually omit the subscript i and con-

sider the processing of one particular frame. The elements of X are

Xk = Xkejαk , 1 ≤ k ≤ N , where Xk is the positive and real

STSA and α ∈ [−π, π). We also define X = [X1 X2 · · · XN ]T

and α = [α1 α2 · · · αN ]T . We assume that X and W are inde-

pendent, zero-mean and circular Gaussians with probability density

functions:

fX(X) = 1
πN det(RX)

e−X
H

RX
−1

X, (1)

fW(W) = 1
πN det(RW)

e−W
H

RW
−1

W. (2)

In these expressions RX = E{XX
H} and RW = E{WW

H} are

the correlation matrices of the clean speech and of the noise respec-

tively, superscript H indicates the conjugate transpose and RW > 0
(positive definite) is assumed. Traditional Bayesian STSA estima-

tion approaches (e.g. [1]) assume that RX and RW are diagonal

matrices, i.e. the spectral components are uncorrelated. In this work,

we do not enforce such diagonality constraint. Our model therefore

considers possible frequency correlations in the clean speech and

noise.

We want to evaluate the minimum mean square error (MMSE)

estimator of X :

X̂
o

= argmin
X̂

E{‖X − X̂ ‖2} (3)

where the minimum is over all possible functions X̂ ≡ X̂ (Y) of

the observation vector Y. We note that the cost function in (3), i.e.

C(X , X̂ ) , ‖X − X̂ ‖2, considers all the STSA frequency com-

ponents jointly. Using matrix calculus, we can show that (3) leads

to:

X̂
o

= E{X |Y} (4)

i.e. the N -dimensional conditional expectation of X given the com-

plete vector of observations Y. This estimator can then be combined

with the phase of the noisy speech, for each frequency, to yield the

estimator of X:

X̂
o = [X̂ o

0 ej∡Y0 , · · · , X̂ o
N−1e

j∡YN−1 ]T . (5)

Unfortunately a closed-form expression for (4) is not readily

available. Since the X̂ o
k are positive real quantities, we approached

the problem of finding a realizable approximation to (4), in [5], by

obtaining tractable upper and lower bounds, X̂ o
U,k and X̂ o

L,k respec-

tively, such that X̂ o
L,k < X̂ o

k < X̂ o
U,k. In the next subsections,

we briefly review these bounds and we then propose a new param-

eterized family of estimators that is based on these lower and upper

bounds.

2.1. Lower Bound

Using the triangle inequality for integration [6], we can show that:

|E{Xk|Y}| ≤ E{Xk|Y}. (6)

As a lower bound on the desired estimator (4), we therefore propose

X̂ o
L,k = |E{Xk|Y}| or equivalently:

X̂
o

L = |E{X|Y}| . (7)

Under the Gaussian statistical model for the clean speech and noise

presented previously, the term E{X|Y} is the MMSE estimator of

X, which is known to be equal to [2]:

E{X|Y} = X̂MMSE = GMMSEY (8)

where the MMSE gain matrix GMMSE is:

GMMSE , RX(RX + RW)−1. (9)

A lower bound on the desired estimator is therefore:

X̂
o

L =
∣

∣GMMSEY
∣

∣. (10)

Note that in the special case of uncorrelated frequency compo-

nents (i.e. the traditional framework), RX and RW in (9) are di-

agonal matrices. Then, combining (10) with the phase of the noisy

speech yields:

X̂k =
SX,k

SX,k + SW,k
Yk (11)

where SX,k = [RX]kk = E{X 2
k } and SW,k = [RW]kk =

E{|Wk|
2}. The processing of each frequency is therefore decou-

pled and the corresponding operation amounts to a standard Wiener

filter.

2.2. Upper Bound

Using Jensen’s inequality [7], we have for a real convex function ϕ:

ϕ(E{Xk|Y}) ≤ E{ϕ(Xk)|Y}. (12)

If we set ϕ(a) = a2, we obtain E{Xk|Y}2 ≤ E{X 2
k |Y} and,

E{Xk|Y} ≤
√

E{X 2
k |Y} (13)

which is also a special case of Lyapunov’s inequality [8]. As an

upper bound on the desired estimator (4), we thus proposed X̂ o
U,k =

√

E{X 2
k |Y} or equivalently:

X̂
o

U = E{X [2]|Y}[1/2]. (14)

We showed previously [5] that this upper bound is given by:

X̂
o

U = (|GMMSEY|[2] + diag{GMMSERW})
[1/2]

. (15)

Since the upper bound includes the lower bound and an additional

positive term, it will obviously be greater than the lower bound.

2.3. Proposed Family of Estimators

The true estimator X̂ o
k is smaller than X̂ o

U,k and greater than X̂ o
L,k.

Based on the expressions of the derived bounds X̂ o
L,k and X̂ o

U,k in

[5], we propose here the following family of estimators:

X̂
o

γ = (|GMMSEY|[2] + γ diag{GMMSERW})[1/2]
(16)

where 0 ≤ γ ≤ 1. We have that X̂ o
L,k ≤ X̂ o

γ,k ≤ X̂ o
U,k with the

limit cases:

X̂
o

γ =

{

X̂
o

U if γ = 1

X̂
o

L if γ = 0.
(17)

As in (5), the spectral amplitude estimators X̂
o

L, X̂
o

U and X̂
o

γ

are then combined with the phase of the noisy speech to obtain the

complex spectrum estimators X̂
o
L, X̂o

U and X̂
o
γ respectively.



3. OTHER CONSIDERATIONS

3.1. Upper and Lower Bound Proximity Analysis

In this section, we study the proximity between the lower and upper

bounds. Since X̂ o
U,k and X̂ o

L,k are both positive terms and X̂ o
U,k >

X̂ o
L,k, we consider the vector

B = (X̂
o

U

[2]
− X̂

o

L

[2]
)./ diag{RX} (18)

as a proximity measure where ./ indicates an element-wise division.

Each element Bk of vector B is therefore a difference of squared

values normalized by SX,k = E{X 2
k }. From (9), (10) and (15), we

have :

B = diag{GMMSERW}./ diag{RX} (19)

= diag{RX(RX + RW)−1
RW}./ diag{RX}. (20)

Therefore, the second term in (15) dictates how tight are the bounds.

Interestingly, this term does not depend on Y (however, in practice,

the estimation of RX does).

3.1.1. Uncorrelated Frequencies

To gain some insight into the behavior of the proximity vector B, let

us first consider uncorrelated frequency components. In that case,

the kth entry of B reduces to:

Bk =
SW,k

SX,k + SW,k
=

1

1 + SNRk
(21)

where SNRk = SX,k/SW,k. For a high SNRk, we have Bk → 0,

while for a low SNRk Bk → 1. Thereore, the bounds will be tighter

as the SNRk gets higher.

3.1.2. Correlated Frequencies

We next consider the case of correlated frequency components. B

can be written in a form apparented to that of (21):

B = diag{RX(IN + RW

−1
RX)−1}./ diag{RX}. (22)

Let µmax = µN ≥ · · · ≥ µ1 = µmin denote the eigenvalues of

RW
−1/2

RXRW
−1/2. It can be shown that, on the one hand, if

µmin >> 1 (high SNR), then B → diag{RW}./ diag{RX} while

on the other hand, if µmax << 1 (low SNR), then B → 1N×1, where

1N×1 denotes an N -dimensional column vector of ones. Therefore,

again, the bounds will be tighter as the SNR gets higher.

3.2. Estimating RX and RW

To compute X̂
o

L (10), X̂
o

U (15) or X̂
o

γ (16), one needs an estimation

of matrices RX and RW. We shall denote the estimates of RX,

RW and RY for the ith frame by R̂X,i, R̂W,i and R̂Y,i respec-

tively. These are computed as in [5]. However, we also experiment

in this paper with a modified structure of the estimator R̂X,i to take

into account the nature of the current frame, i.e. voiced vs. unvoiced.

Indeed, since the correlation due to the harmonics of the fun-

damental frequency is only present in the voiced parts of speech, it

would be appropriate to consider a diagonal R̂X,i in unvoiced parts

and a full (i.e. unconstrained) R̂X,i in voiced parts. A similar ap-

proach was used in [2] where a hard threshold is used to distinguish

between voiced and unvoiced speech sections. Here, we propose a

soft threshold approach in which the constrained estimator of RX,i,

denoted R̂
δi

X,i, is computed as:

R̂
δi

X,i = δiR̂X,i + (1 − δi) diag{R̂X,i}. (23)

where 0 ≤ δi ≤ 1 is a soft threshold parameter accounting for

voiced or unvoiced frames. We use the zero-crossing rates (ZCR) in

the noisy speech time domain signal to distinguish between voiced

and unvoiced parts since voiced parts are primarily low frequencies

and unvoiced parts are primarily high frequencies [4]. A ZCR voiced

threshold tv is used, below which the frame is judged to be voiced

and δi is set to 1. A ZCR unvoiced threshold tu > tv is also used,

above which the frame is judged to be unvoiced and δi is set to 0. For

ZCR between tu and tv , intermediate values of δi are used. Specifi-

cally, the value of δi is evaluated as follows:

δi =











1 ZCR ≤ tv

tu−ZCR

tu−tv
tv < ZCR < tu

0 ZCR ≥ tu.

(24)

The clean speech estimators using R̂
δi

X,i (23) to estimate RX,i will

be denoted by the additional subscript δ, i.e. X̂δMMSE, X̂
o
δL, X̂

o
δU

and X̂
o
δγ , otherwise, the estimator will use R̂X,i. We refer to R̂

δi

X,i

as the soft threshold structured estimator as opposed to the unstruc-

tured R̂X,i.

4. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed estimators. The value of

γ = 0.5 will be considered in the X̂
o
γ and X̂

o
δγ estimators. Two

types of noises from the Noisex database [9] are used in the exper-

iments: a white noise and a colored (i.e. pink) noise. Other noise

types were considered during the experimentation and lead to the

same conclusions as the ones drawn below. Thirty noisy sentences

were used in the evaluations and were all sampled at 16 kHz. A

raised-cosine window [10] was used (N = 512 samples, 32ms) in

the STSA computation and a 75% overlap was used in the overlap-

add synthesis method as in [1].

We identified through experimentation the following ZCR

thresholds to be used in (24): tv = 3500 crossings/sec and

tu = 6000 crossings/sec. Since ZCR are affected when the SNR is

very low, R̂δ
X,i (23) was only used if the power of the current frame

was 1.5 times the estimated power of the noise, otherwise we used

R̂X,i.

Table 1 presents wideband PESQ [11] results. The wideband

PESQ attempts to predict MOS scores and yields a result from 1 to

4.5, the higher score being the best result. As can be observed, the

best results for all cases are always obtained by one of the proposed

estimators. The algorithms that used the soft threshold structured

estimator for the clean speech correlation matrix estimation R̂
δi

X,i

(i.e. X̂δMMSE, X̂o
δL, X̂o

δU and X̂
o
δγ) gave better results than the ones

using the unstructured R̂X,i (i.e. X̂MMSE, X̂
o
L, X̂

o
U and X̂

o
γ) for

white noise while they were found more or less equivalent for col-

ored noise. X̂o
δγ mostly gave better results than X̂

o
δL and X̂

o
δU while

the advantage of X̂
o
γ over X̂

o
L and X̂

o
U was case dependent.

Fig. 1 presents LLR results for selected representative estima-

tors for white and pink noises. The LLR measure is evaluated as

in [12]; a lower LLR score indicates a better performance. As can be

observed, the comparison between the existing and the proposed al-

gorithms were quite different between white and colored (i.e. pink)

noises. In fact, for white noise with an SNR of 20 dB, the proposed



Table 1. Comparative wideband PESQ values for white and colored (pink) noises at several SNRs (10, 15 and 20 dB).

MMSE Wiener X̂MMSE X̂
o
L X̂

o
U X̂

o
γ X̂δMMSE X̂

o
δL X̂

o
δU X̂

o
δγ

STSA [1] (11) (8)

White

10 dB 1.35 1.53 1.57 1.57 1.46 1.52 1.61 1.61 1.52 1.59

15 dB 1.70 1.90 1.94 1.98 1.93 1.98 1.98 2.01 2.04 2.11

20 dB 2.25 2.45 2.39 2.44 2.53 2.52 2.48 2.51 2.62 2.65

Pink

10 dB 1.47 1.58 1.70 1.74 1.70 1.74 1.71 1.75 1.71 1.77

15 dB 1.90 1.95 2.05 2.10 2.21 2.20 2.06 2.11 2.19 2.23

20 dB 2.48 2.48 2.49 2.53 2.72 2.66 2.55 2.58 2.70 2.72

10 15 20
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L
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X̂
o
γ

X̂
o
δγ

White noise
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(a)

Fig. 1. LLR values versus SNR for white and pink noises.

estimators gave the best results while for the 0 dB case, the Wiener

and X̂MMSE were slightly better than the proposed estimators. For

the colored pink noise case, the proposed estimators were always

better.

Only results for the value of γ = 0.5 in the X̂
o
γ and X̂

o
δγ esti-

mators were reported in this paper. However, we also performed ex-

periments with other values of γ. As expected, the results indicated

that choosing values for γ closer to 0 yielded an enhanced speech

closer to the one obtained with X̂
o
L while choosing a value closer to

1 yielded an enhanced speech closer to X̂
o
U .

Informal listening experiments were also conducted to evalu-

ate the qualitative merits of the proposed estimators. In particu-

lar, it was found that the processed speech in X̂MMSE, X̂
o
L, X̂

o
U

and X̂
o
γ sounded a little bit more muffled than the one obtained by

Wiener or MMSE STSA. By allowing a better model for the un-

voiced speech parts, the estimators X̂δMMSE, X̂
o
δL, X̂

o
δU and X̂

o
δγ

better preserve the fricatives and have less muffled speech. The best

estimator overall was found to be the X̂
o
δγ estimator. In fact, it has

whiter background noise than Wiener’s, less background noise than

MMSE STSA and less speech distortions than the unconstrained full

matrix equivalent X̂o
γ .

5. CONCLUSION

In this paper we proposed a family of multidimensional Bayesian

STSA estimators for speech enhancement that assume correlated fre-

quency components. Results of wideband PESQ, LLR and informal

listening experiments demonstrate noticeable advantages of the pro-

posed estimators over existing ones. In particular, X̂o
δγ offers a good

compromise between speech quality and background noise quantity

and whiteness and is found to be the best overall estimator, especially

at high SNR.
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