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Abstract—Device-to-device (D2D) communication is an en-
abling technology for fog computing by allowing the sharing
of computation resources between mobile devices. However,
temperature variations in the device CPUs affect the computation
resources available for task offloading, which unpredictably alters
the processing time and energy consumption. In this paper, we ad-
dress the problem of resource allocation with respect to task par-
titioning, computation resources and transmit power in a D2D-
aided fog computing scenario, aiming to minimize the expected
total energy consumption under probabilistic constraints on the
processing time. Since the formulated problem is non-convex,
we propose two sub-optimal solution methods. The first method
is based on difference of convex (DC) programming, which
we combine with chance-constraint programming to handle the
probabilistic time limitations. Considering that DC programming
is dependent on a good initial point, we propose a second
method that relies on only convex programming, which eliminates
the dependence on user-defined initialization. Simulation results
demonstrate that the latter method outperforms the former in
terms of energy efficiency and run-time.

I. INTRODUCTION

Major advances in wireless networking technologies en-
abling ultra-high data rates with low latency have led to the
proliferation of computation intensive applications, such as
augmented reality, interactive gaming and video streaming [1].
However, considering the exacting computation and storage
requirements of these applications, the rate of technological
advancements on the device side has been generally slower, so
that they can hardly meet such demands. Cloud computing, in
which user devices offload their computation-intensive tasks
to much more powerful remote servers, can help devices
reduce their computation burden [2]. However, due to network
congestion, cloud computing may not be suitable for real-
time applications requiring ultra-low latency and very high
bandwidth [3]. Mobile edge computing (MEC) provides an
alternative to cloud computing by offloading computation to
servers at the edge of the network, thereby reducing end-
to-end delays and data processing bottlenecks [4]. However,
the computation capability of MEC servers is limited, and in
situations involving extensive data traffic and high user density,
some mobile devices might not be able to access them, which
negatively impacts the quality of service [5].

As a complement to cloud and edge computing, fog
computing provides a decentralized framework whereby the
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available computation resources of nearby mobile devices
are exploited for task offloading through incentive policies
[6–8]. Due to the proximity of the available resources, this
type of task partitioning mechanism reduces the latency and
the backbone traffic in the network, and in turn, increases
energy efficiency [9]. Device-to-device (D2D) communication,
which will play an important role in fifth generation (5G) and
beyond 5G (B5G) networks, is a strong candidate to enable
fog computing. In [9], the authors focus on maximization of
total utility in terms of energy and time consumption in a
D2D-aided fog computing scenario. In [10], minimization of
average task completion time is considered by using a game
theoretical model. Reference [11] considers network-assisted
D2D fog computing, in which the objective is to minimize
time-average energy consumption, whereas in [12] the problem
of computation latency minimization in D2D fog computing
is studied by considering an optimal task assignment strategy.
However, the aforementioned studies do not consider CPU
throttling during task offloading, as discussed below.

In mobile devices, dynamic thermal management (DTM)
schemes control the on-chip temperature by lowering the
voltage and frequency of the CPU to prevent damage in
the case of high temperature [13]. Ideally, devices allocate
the highest available CPU frequency, measured in cycles per
second, to perform a given task within a minimum amount
of time. Due to DTM, however, significant yet unpredictable
fluctuations in allocated CPU frequency do occur [14]. Since
real-time applications require low latency and strict processing
times, a random reduction in CPU frequency negatively im-
pacts task offloading. Consequently, to optimize fog computing
performance subject to this type of uncertainty, allocation of
computation resources should be treated as a probabilistic
optimization problem rather than a deterministic one.

Motivated by the aforementioned challenges, we address
the problem of optimal resource allocation in terms of task
partitioning, computation resources and transmit powers, in
D2D-aided mobile fog computing. Specifically, we aim to
minimize the expected total energy consumption under prob-
abilistic constraints on the task processing time. Since the
formulated problem is non-convex, finding the global optimum
is generally intractable; therefore, we propose two sub-optimal
solution methods. The first method leverages the difference of
convex (DC) optimization framework combined with chance-
constraint programming to handle the probabilistic constraints.
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Nonetheless, we find that the performance of DC programming
remains sensitive to the choice of the initial point. To overcome
this difficulty, we develop a second method that relies solely
on convex programming. Simulation results demonstrate that
the second method outperforms the first one in terms of energy
efficiency and run-time, while both methods offer significant
energy savings over local computation.

The paper is organized as follows. In Section II, we describe
the system model and formulate the problem statement. In
Section III, we present the proposed DC and convex program-
ming methods. Simulation results are presented and discussed
in Section IV. Finally, Section V concludes the paper.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. System Model
We consider a wireless sub-network comprised of a single

active device that has a computation-intensive task to perform
and J offloading devices which can be used to offload this
task, as seen in Fig. 1. We label the active device by 0 and the
offloading devices by j ∈ J = {1, 2, . . .}. Similar to [10], we
assume simultaneous orthogonal side-links to establish D2D
communications between the active device and each one of
the offloading devices prior to task offloading.

Fig. 1. D2D-aided fog computing scenario, where an active device (indexed
by 0) can offload its tasks to nearby offloading devices (indexed by j ∈ J ) .

The computation task of the active device is characterized
by the tuple (b, c, tmax). Here, b indicates the task size in bits, c
denotes the number of CPU cycles required to process one bit
of data, and tmax is the maximum time limit for completing the
task. The device may compute its task locally and/or partially
offload it to one or more offloading devices in J . Accordingly,
the task size can be decomposed as:

b = b0 +
∑
j∈J

bj (1)

where b0 and bj represent the portions kept at the active
device and sent to the jth offloading device, respectively.
These portions are collected in the vector b = [b0 b1 . . . bJ ]

>

where > denotes the transpose operation.
To compute the local portion of its task, the active device

allocates a part f0 of its computation resources, measured in
CPU cycles per second, which cannot exceed its maximum
computation capability fmax

0 . However, due to unpredictable
CPU throttling, e.g., resulting from temperature fluctuations,
the actual computation resource used by the device is f̃0 =
(1− ξ0)f0, where ξ0 ∈ [0, 1] is a random variable with known

distribution. Denoting the time it takes to complete the local
portion of the task at the active device as tco

0 , we can write:

f̃0t
co
0 = b0c (2)

The energy consumed for local computation is given by [15]:

Eloc = κb0cf̃
2
0 = κf̃30 t

co
0 (3)

where κ is an effective capacitance constant that depends on
the chip architecture.

The active device also uploads to the jth offloading device
the corresponding task portion of size bj . The achievable data
rate for transmission to the jth device is:

Rj = W log2

(
1 +

PjGj
N0

)
(4)

where Pj is the allocated transmission power, Gj is the
channel gain, W is the channel bandwidth, and N0 is the
noise power. Denoting by tup

j the upload time, we have:

bj = Rjt
up
j (5)

As in the case of the active device, the jth offloading device
allocates a part fj of its computation resources, which cannot
exceed its maximum computation capability fmax

j , to complete
the offloaded task. As before, the actual computation resource
used is f̃j = (1 − ξj)fj where ξj is a random variable with
known distribution. Then, similar to (2), we have:

f̃jt
co
j = bjc (6)

where tco
j is the time it takes the complete the offloaded portion.

Overall, the energy consumed to upload and compute the
offloaded tasks is:

Eoff =
∑
j∈J

(
Pjt

up
j + κf̃3j t

co
j

)
(7)

Finally, the total energy consumed to complete the task can
be given as a sum of two terms:

E = Eloc + Eoff =
∑
j∈J

Pjbj
Rj︸ ︷︷ ︸

φ(p,b)

+
∑
i∈I

κbicf̃
2
i︸ ︷︷ ︸

ψ(b,̃f)

(8)

where I = {0} ∪ J , while φ(p,b) and ψ(b, f̃) are the total
task uploading energy and the total task computation energy,
respectively. Furthermore, p = [P1 ... PJ ]

> contains the
transmit powers of the active device to its offloading devices
and f̃ = [f̃0 f̃1 ... f̃J ]

> contains the actual computation
resources used by the devices.

B. Problem Statement

In this paper, we address the problem of optimal resource
allocation, in terms of task portions, computation resources
and transmit powers, in the above D2D-aided fog computing
scenario. Since the allocated computation resources have a
random nature, we aim to minimize the expected value of the
total energy consumption subject to probabilistic constraints
on the task processing times:
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P1 : min
p,b,f,t

Eξ

[
E
]

(9a)

s.t. 0 ≤
∑
j∈J

Pj ≤ Pmax (9b)∑
i∈I

bi = b (9c)

P(tco
0 ≤ tmax) ≥ γ (9d)

P
(
tco
j ≤(tmax − tup

j )
)
≥ γ,∀j∈J (9e)

bj = Rjt
up
j , ∀j ∈ J (9f)

f0 ≤ fmax
0 , fj ≤ fmax

j ,∀j ∈ J (9g)

b0, bj , f0, fj , t
up
j ≥ 0 ∀j ∈ J (9h)

where f = [f0 f1 ... fJ ]
> contains the allocated computation

resources and t = [tup
1 ... tup

J ]
> includes the task upload

times to each offloading devices. Also, Eξ[·] is the expectation
operator, and P(·) is the probability of an event.

In problem P1, the expectation in (9a) is taken over the
distribution of the random vector ξ = [ξ0 ξ1 ... ξJ ]

>, constraint
(9b) limits the total transmit power of the active device to
Pmax while constraint (9c) guarantees that the task portion
sizes add up to the original task size. Constraints (9d) and
(9e) stipulate that the probability of completing the task within
the maximum time limit tmax is higher than a given reliability
level γ ∈ [0, 1]. Constraint (9f) ensures that the channel rate
and corresponding task uploading time are consistent with
the allocated task portions. Finally, constraint (9g) indicates
that the allocated computation resources cannot exceed the
computation capabilities of the devices and constraint (9h)
expresses the non-negative nature of the decision variables.

III. PROPOSED SUB-OPTIMAL METHODS

Due to the non-convex objective function (9a) and the
non-convex constraints (9d), (9e), problem P1 is intractable.
Therefore, in this section, we propose two sub-optimal meth-
ods to solve problem P1.

In the first method, we write the non-convex objective
function and the non-convex constraints as difference of
convex functions (DCF), while using chance-constraint pro-
gramming to handle the probabilistic time constraints. The
new optimization problem can then be solved using DC
programming. In the second method, to address certain issues
related to initialization of the DC programming-based method,
we propose a more effective two-step approach which relies
solely on convex programming.

A. DC Programming Method

We start by writing the task uploading energy φ(p,b)
introduced in (8) as a DCF:

φ(p,b) = φ1(p,b)− φ2(p,b) (10)

where φ1(p,b) =
∑
j∈J (Pj +

bj
2Rj

)2 and φ2(p,b) =∑
j∈J (P

2
j +

b2j
4R2

j
). We also decompose the expected value

of the total computation energy ψ(b, f̃) as follows:

Eξ[ψ(b, f̃)] = Eξ

[∑
i∈I

κbic(1− ξi)2f2i
]

= κc
∑
i∈I

ηi
(
(bi + fi/2)

2 − (b2i + f2i /4)
)

= ψ1(b, f)− ψ2(b, f) (11)

where ψ1(b, f) = κc
∑
i∈I ηi(bi + fi/2)

2, ψ2(b, f) =
κc
∑
i∈I ηi(b

2
i + f2i /4) and ηi = E[(1− ξi)2], i ∈ I. Finally,

the objective function (9a) expressed as a DCF:

Eξ[E] ≡ H(x) = Y (x)− Z(x) (12)

where Y (x) = φ1(p,b) + ψ1(b, f) and Z(x) = φ2(p,b) +
ψ2(b, f) are convex functions, and x = [p>b>f>t>]> contains
all the search variables for convenience.

As shown in [16], to apply a DC algorithm, each non-
convex equality and inequality constraints can be incorporated
into (12) by using a penalty parameter once their DCFs
are available. However, for our problem, we found that this
approach yielded slow convergence. Whereas in [17], a DC al-
gorithm is applied to a problem consisting of only non-convex
inequality constraints that are decomposed as DCFs. Hence,
if we eliminate the equality constraint (9f) by incorporating
it into (12) based on the penalty approach in [16], we can
develop a DC-based algorithm as in [17] to solve a problem
involving a penalized objective function (which is shown to
be DCF [16]) with only inequality constraints (9d) and (9e).

To this end, we decompose the non-convex equality con-
straint (9f) as:

Ceq
j (x) =

bj
Rj
− tup

j = Y eq
j (x)− Zeq

j (x), ∀j ∈ J (13)

where Y eq
j (x) = (bj +

1
2Rj

)2 and Zeq
j (x) = (b2j +

1
4R2

j
+ tup

j )

are convex functions. Then we introduce the penalty term in
the objective function, which can be also written as a DCF
[16]:

Hλ(x) = Yλ(x)− Zλ(x) (14)

where

Yλ(x)=Y (x)+2λ
∑
j∈J

max
{
Y eq
j (x);Zeq

j (x)
}

(15)

Zλ(x) = Z(x) + λ
∑
j∈J

(Y eq
j (x) + Zeq

j (x)) (16)

and λ ≥ 0 is the penalty parameter.
In order to deal with the probabilistic inequality constraints

(9d) and (9e), we adopt the chance-constraint programming
approach [18], and transform them into their deterministic
equivalents. Specifically, constraint (9d) can be given in terms
of the cumulative distribution function (CDF) of ξ0, Fξ0(·), as
follows:

P
(

b0c

(1− ξ0)f0
≤tmax

)
=P
(
ξ0≤

f0t
max − b0c
f0tmax︸ ︷︷ ︸

z

)
= Fξ0(z) ≥ γ
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Then, assuming Fξ0(·) is invertible, we can obtain the deter-
ministic form of constraint (9d) as follows:

C0(x) =
f0t

max − b0c
f0tmax − F−1ξ0

(γ) ≥ 0 (17)

where F−1ξ0 (γ) is the inverse CDF evaluated at γ. The new
deterministic constraint (17) can now be written as a DCF in
the following way:

C0(x) = ln(
b0
f0

)− ln(q0) = Y0(x)− Z0(x) ≤ 0 (18)

where q0 = tmaxc−1(1− F−1ξ0
(γ)) is a non-negative constant,

and Y0(x) = −ln(f0) and Z0(x) = −ln(b0)+ln(q0) are convex
functions.

Proceeding in a similar way, the deterministic form of
constraint (9e) is:

Cj(x) =
fj(t

max − tup
j )− bjc

fj(tmax − tup
j )

− F−1ξj
(γ) ≥ 0, ∀j ∈ J (19)

where F−1ξj
(γ) is the inverse CDF of ξj evaluated at γ. In turn,

(19) can be decomposed as follows:

Cj(x)=
tup
j fjqj

tmax +bj−fjqj=Yj(x)−Zj(x) ≤ 0, ∀j∈J (20)

where qj = tmaxc−1(1 − F−1ξj
(γ)) ∀j ∈ J is a non-negative

constant, and Yj(x) =
qj
tmax (t

up
j + fj/2)

2 + bj and Zj(x) =
qj
tmax

(
(tup
j )

2 + f2j /4
)
+ fjqj are convex functions.

Our first method is finally obtained by combining the
DC programming approach in [17] with the penalized DC
approach in [16]; the resulting procedure is presented as
Algorithm 1. Following initialization, at the kth iteration of
the algorithm, we first determine the convex approximations
H

(k)
λ (x) and C

(k)
i (x) of Hλ(x) and Ci(x) in step 3 and 4,

respectively, where ∇ denotes the gradient operator. In step
5, we minimize H(k)

λ (x) subject to the indicated constraints
using standard convex optimization techniques until the se-
quence {H(k)

λ (x)} converges with tolerance ε or the maximum
iteration number kmax is reached. The algorithm outputs the
desired vector x(k) of the allocated resources.

Algorithm 1 DC Algorithm Method

1: input Set k = 0, initialize x(0)
2: repeat
3: H

(k)
λ (x) = Yλ(x)− Zλ(x(k))−∇Zλ(x(k))>(x− x(k))

4: C
(k)
i (x)=Yi(x)−Zi(x(k))−∇Zi(x(k))>(x−x(k)), i ∈ I

5: solve x(k+1) = argmin
x

H
(k)
λ (x)

6: s.t. C(k)
i (x) ≤ 0, i ∈ I

7: (9b), (9c), (9g) and (9h)
8: k ← k + 1
9: until |Hλ(x(k+1))−Hλ(x(k))| > ε or k ≤ kmax

10: output x(k)

B. Convex-Programming Method

Although DC programming guarantees a local optimum by
converging to a stationary point [19], its performance depends
heavily on the choice of the initial point x(0). To address
this limitation, we propose a more effective two-step approach
relying solely on convex programming, which eliminates the
dependence on user-defined initialization.

Consider an ideal scenario, in which there is no uncertainty
in the allocated computation resources and the task uploading
is instantaneous, i.e., ξi = 0,∀i ∈ I and tup

j = 0,∀j ∈ J .
For this scenario let f? and b? be the optimal computation
resources and the optimal task partitioning subject to constraint
(9c), which gives the minimum total energy consumption as
E?. Note that based on (2) or (6), we have f?i t

co
i = b?i c,∀i ∈ I.

It can be seen that at the optimal solution, the task comple-
tion time must match the given deadline, i.e., tco?

i = tmax,
since there cannot be any other computation resources, say
f+i ∀i ∈ I with f+i < f?i that can reduce further the total
energy consumption E? without violating the time constraint
or constraint (9c).

Based on the above, we can write the total computation
energy in terms of only transmit power and task partitioning
by replacing tco

0 with tmax and tco
j with (tmax− tup

j ) as follows:

ψ(p,b) =
κ(b0c)

3

(tmax)
2 +

∑
j∈J

κ(bjc)
3(

tmax − bj
Rj

)2 (21)

Hence, we decouple the allocation of computation resources
and task partitioning in (21). More importantly, it can be
shown that (21) is a convex function over the convex feasible
set defined by constraints (9b) and (9c). Therefore, in the first
step of our convex-programming method, we minimize the
convex part ψ(p,b) subject to constraints (9b), (9c) and a
modified form of constraint (9f) from problem P1:

P2 : min
p,b

ψ(p,b) (22a)

s.t. 0 ≤
∑
j∈J

Pj ≤ Pmax (22b)∑
i∈I

bi = b, bi ≥ 0 (22c)

bj − αRjtmax ≤ 0,∀j ∈ J (22d)

Problem P2 can be easily solved by means of standard
convex optimization methods. In constraint (22d), the scaling
parameter α ∈ (0, 1) is used to avoid the task uploading time
exceeding the maximum time limit, i.e., tup

j > tmax. In this
way, constraint (22d) allows the computation time tco

j ∀j ∈ J
to be within the maximum time limit, and consequently, the
solution of P2 lies in the feasible set of problem P1. We
denote the solution of Problem P2 as b∗ and p∗.

In the second step, we minimize the expectation of the total
computation energy (11) with respect to computation resources
subject to deterministic equivalents of constraints (9d) and
(9e), wherein the optimal values of b∗ and p∗ from Problem
P2 are used in place of b and p.
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P3 : min
f

Eξ[ψ(b∗, f̃)] =
∑
i∈I

κcηib
∗
i f

2
i (23a)

s.t.
b∗0c

tmax(1− F−1ξ0
(γ))

≤ f0 (23b)

b∗jc

(tmax − tup∗
j )(1− F−1ξj

(γ))
≤ fj ,∀j∈J (23c)

Note that tup∗

j =
b∗j
R∗
j
∀j ∈ J , where R∗j is the corresponding

data rate for P ∗j ; we then form the vector t∗ accordingly. It
can be seen that the optimal solution f∗ of problem P3 can
be directly calculated since it satisfies constraints (23b) and
(23c) with equality.

After solving problem P3, the allocated computation re-
source at an offloading device, say j, might exceed its com-
putation capability, i.e., f∗j > fmax

j . In this case, the solution
of P3 is not in the feasible set of P1 as constraint (9g) is
violated. To address this issue, we reduce f∗j to fmax

j and we
adjust the initially allocated task portion b∗j so that it can be
computed without violating constraint (9g). Specifically, we
replace b∗j by

b+j =
fmax
j R∗j t

max(1− F−1ξj
(γ))

R∗j c+ fmax
j (1− F−1ξj

(γ))
(24)

which is the maximum task portion size that can be computed
by utilizing the full available computation resource fmax

j . The
value of b+j is obtained from constraint (23c) by replacing fj
with fmax

j . Then the excess task portion, b∗j−b
+
j , is assigned to

the active device and/or the rest of the offloading devices. This
is done by solving problem P2 and P3 after we remove the
jth device from the set of available offloading destinations,
i.e., we replace J with J − {j}. The process is repeated
until constraint (9g) is no longer violated by the remaining
offloading devices. If the set J becomes empty, then the
leftover portion of the task size is computed at the active
device, where we assume that b∗0c

tmax(1−F−1
ξj

(γ))
= f∗0 < fmax

0

based on constraint (23b). Finally, we present the overall
progress of our second method in Algorithm 2.

Algorithm 2 Convex-Programming Method

1: Solve P2 and P3 to obtain p∗, b∗, f∗and t∗
2: for j ∈ J do
3: if f∗j > fmax

j then
4: f∗j ← fmax

j

5: Calculate the new task size b+j using (24)
6: b∗j ← b+j
7: b← b− b+j
8: Pmax ← Pmax − P ∗j
9: Disregard the jth device: J ← J − {j}

10: Update p∗, b∗, f∗and t∗ by solving P2 and P3

11: Go to line 2
12: end
13: end
14: Output p∗, b∗, f∗and t∗

IV. SIMULATION RESULTS

In this section, we compare the energy efficiency and run-
time of the proposed methods through Monte Carlo sim-
ulations. In each simulation run, we uniformly place the
offloading devices on a disk with a radius set to 15m centered
at the active device. Furthermore, we consider independent
Rayleigh fading channels and distance-dependent path loss
model, PL=148 + 40log10(d) in dB, where d is the distance
in km [20]. As a benchmark we also include the energy
consumption when J = ∅, i.e., the task is completed locally.
For the CPU throttling we assume that ξi, i ∈ I, are uniform
U(0, 0.1), i.e., the actual computation resources may be below
the allocated ones by up to 10%. We select the task size b from
a uniform distribution U(2×104, 4×105), and we set fmax

0 to
a large value such that the assumption in the previous section
holds. The rest of the system parameters are given in Table I.

TABLE I. System parameters

Parameter Description Symbol Value
Number of offloading devices J {1, 2, 3}
CPU cycles to process 1-bit data c 1500 cycles/bit
Effective capacitance constant κ 10−24 Ws3

Max. iteration for DC prog. kmax 103

Max. time constraint tmax [.4, 1]s
Max. transmit power Pmax 200mW
Limiting term for task uploading time α .85
Reliability level γ .95
Convergence tolerance for DC prog. ε 10−2

Penalty parameter for DC prog. λ 12
Max. radius of a D2D link - 20m
Noise level N0 −114dBm
Channel bandwidth W 10MHz
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Fig. 2. Expected total energy consumption versus tmax for different numbers
of offloading devices (γ = .95).

In Fig. 2, we investigate the effect of the maximum time
limit to complete the task. We assume that the devices have the
same tmax and to simulate different computation capabilities
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of the offloading device we select fmax
j from a uniform distri-

bution U(3 × 107, 1 × 108) for each simulation run. As seen
from Fig. 2, regardless of the time limit, both of our methods
significantly reduce the total energy consumption compared
to local task computation. However, the performance of the
convex-programming method outperforms DC programming
in terms of energy efficiency. Specifically, tmax = 0.4s,
the total energy consumption with our convex-programming
method requires almost 30% less energy to compute the same
task with respect to computing it only at the local device. Note
that by increasing the maximum time limit, we can reduce
the required computation resources, which naturally lowers
the energy consumption. However, this negatively impacts the
quality of service of the given task in terms of latency.

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

F
max

 (Hz) 10
8

0

10

20

30

40

50

60

70

E
x
p

e
c
te

d
 T

o
ta

l 
E

n
e

rg
y
 C

o
n

s
u

m
p

ti
o

n
 (

J
o

u
le

)

Local Comp.

DC Prog. J=1

Convex-Prog. J=1

DC Prog. J=2

Convex-Prog. J=2

DC Prog. J=3

Convex-Prog. J=3

Fig. 3. Expected total energy consumption versus Fmax for different numbers
of offloading devices (tmax = 1, γ = .95).

In Fig. 3, we consider the effect of maximum computa-
tion resources at the offloading devices on the total energy
consumption. Specifically, we select fmax

j from a uniform
distribution U(Fmin,Fmax), where Fmin is set to 3 × 107 Hz
while Fmax is ranging from 5×107−1.5×108 Hz. Even though
increasing the number of offloading devices drastically reduces
the energy consumption, the amount of available computation
resources at the offloading devices limits the energy efficiency
during task offloading. Therefore, reducing the total energy
consumption not only depends on the number of nearby
devices but is also highly affected by the amount of available
computation resources that can be allocated by the offloading
devices.

Finally, in Table II we compare the average run-time of
proposed methods implemented in MATLAB on an Intel i7-
3770 computer with 16GB RAM. The proposed convex-
programming based method not only achieves a better perfor-
mance compared to our DC programming approach in terms of
energy efficiency but also its run-time is significantly shorter.
Specifically, with the increased number of offloading devices,
DC programming takes at least ten times longer to converge

within the selected tolerance value ε. In addition, we observe
that the required number of iterations for DC programming
to converge is more than three times compared to our second
method that is iteratively running Algorithm 2.

TABLE II. Average run-time comparison (tmax = .4)

Simulation setup DC Prog. Method Convex-Prog. Method
Fmax = 4× 107 J = 1 3.98 s 0.40 s
Fmax = 1× 108 J = 1 3.64 s 0.40 s
Fmax = 4× 107 J = 2 8.26 s 0.41 s
Fmax = 1× 108 J = 2 7.53 s 0.40 s
Fmax = 4× 107 J = 3 11.88 s 0.46 s
Fmax = 1× 108 J = 3 11.60 s 0.42 s

V. CONCLUSION

In this paper, we proposed two sub-optimal methods for a
D2D-aided fog computing scenario under probabilistic time
constraints. The first method relies on DC programming,
however, its performance is very sensitive to the choice
of the initial point. Hence, we propose a novel alternative
solution based on convex programming, which eliminates the
dependence on user-defined initialization. Nevertheless, due to
the uncertainties on the allocated computation resources, we
incorporate chance-constraint programming into both methods.
While both proposed sub-optimal task offloading methods
significantly reduce the total energy consumption compared
to computing the task locally, the second method outperforms
DC programming in terms of energy efficiency and run-time.
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