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ABSTRACT

A cognitive radar adapts its waveform to match the extended target’s
frequency response (TFR) for optimized detection performance. In
practice, the TFR is unknown and is usually estimated using the
Kalman filter assuming a linear Gaussian model. However, this
assumption is not always fulfilled and other filters as the particle
filter should be used. In all cases, existing approaches require the
complete knowledge of the statistical distributions of both the TFR
and interference. In this paper, we present a novel formulation of
the TFR estimation problem that allows us to use the infinite hid-
den Markov model (iHMM) to estimate and track the TFR without
such prior knowledge. Monte Carlo simulations considering Gaus-
sian and non-Gaussian distributions for TFR and interference as well
as jamming effects show that the proposed iHMM-based method
ameliorates the estimation accuracy compared to the conventional
Bayesian filtering techniques.

1. INTRODUCTION

Cognitive radar systems are distinguished by their dynamic adapta-
tion of their transmitter and receiver operations through continuous
learning from the environment [1, 2]. One goal of the transmitter
adaptation is to optimize its waveform relative to the target of inter-
est. An extended target can be viewed as a combination of multiple
point targets and is modeled as a linear time-invariant or time-variant
system and characterized by the target impulse response or, equiva-
lently, by its target frequency response (TFR) [3, 4].

In practice, the TFR is unknown and is conventionally estimated
as the hidden state of a state-space model using a Bayesian filter.
For a linear Gaussian state-space model, a Bayesian filter is realized
exactly by the Kalman filter (KF). For nonlinear Gaussian models,
the KF can be approximated using extended, decoupled, unscented,
or cubature KF [5]. If both the Gaussian and linear assumptions are
not met, the particle filter (PF) is the best possible approximation for
the Bayesian filter [6]. Previous works reported in the literature have
focused on using the KF assuming Gaussian TFR and interference
(noise and clutter) with known statistics [7–9], which are not always
available.

In contrast to KF, the hidden Markov model (HMM) is not lim-
ited to linear Gaussian models. While in the KF the state transitions
follow a continuous Gaussian linear model, the HMM assumes dis-
crete states whose transitions follow a Markov chain. Interestingly,
the discrete states assumption is well-suited to modern digital radar
receivers, where the amplitudes of the processed signals are quan-
tized to a finite number of values [10]. These observations motivate
our investigation of applying the HMM to the TFR estimation prob-
lem. However, in a similar manner to KF and PF, to apply HMM
to TFR estimation the model structure (e.g., transition probabilities)

must be known, which is rarely the case. A promising solution to this
difficulty is the nonparametric Bayesian framework, which when ap-
plied to the HMM results in the infinite HMM (iHMM).

In this paper, we provide a new formulation for the TFR esti-
mation problem that makes it amenable to iHMM-based solutions.
Then, we propose a new iHMM-based TFR estimation method that
inherits all the desirable properties of nonparametric Bayesian ap-
proaches that is, it does not require any prior knowledge about the
statistical properties of the TFR or the interference. Monte Carlo
simulations are performed to compare the proposed method with the
KF assuming Gaussian TFR and interference. We take the perfor-
mance analysis a step further than the literature by considering the
tracking performance over multiple pulses rather than the estimation
performance at a single pulse. Moreover, we extend the analysis to
the non-Gaussian TFR or clutter cases, for which we develop the PF
and use it as a benchmark. Finally, we consider severe operating
conditions such as smart noise jamming, which has not been consid-
ered before in TFR estimation context. Our simulations show that
the proposed method outperforms KF and PF in terms of tracking
error in all considered scenarios.

2. BACKGROUND: EXTENDED TARGET MODEL

Let g̃ ∈ CLs be the discrete-time transmitted radar waveform, which
is fixed for M pulses, where Ls is the number of samples. A target
with a range span larger than the radar’s range cell can be divided
into multiple, say Lt, discrete scattering centers. In this case, the
total received signal at the mth pulse r̃(m) ∈ CLs+Lt−1 is

r̃(m) = g̃ ∗ h̃(m) + c̃(m) + ñ(m) (1)

where * denotes convolution, h̃(m) ∈ CLt is the target impulse re-
sponse, which changes on a pulse-to-pulse basis, c̃(m) is the clutter
vector and ñ(m) is the noise vector. In this work, ñ(m) and c̃(m) are
modeled as independent random vectors with ñ(m) ∼ CN (0,Σn),
while the distributions of h̃(m) and c̃(m) are discussed later.

After passing through an analog-to-digital converter (ADC), the
baseband received signal r̃(m) is passed through a receive filter of
length Ls. The filter output of length Lr = 2Ls + Lt − 2 is
then transformed to the frequency domain via an Lr-point discrete
Fourier transform (DFT). Denoting T{·} as the combined effect of
the Lr-point DFT and the receive filter operations, which are both
linear, the frequency-domain received signal is

r(m) = Gh(m) + c(m) + n(m) (2)

where r(m) = T{r̃(m)}, G = diag(T{g̃}) is the diagonal ma-
trix of T{g̃}, h(m) is the target frequency response (TFR), c(m) =

T{c̃(m)}, and n(m) = T{ñ(m)}.
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The TFR is usually assumed to be linear and Gaussian dis-
tributed, where the Bayesian filter for TFR estimation is realized
using the KF. However, the conditions for the Gaussian assumption
are not always met in real scenarios [11, 12]. Moreover, the clut-
ter signals in many radar environments are non-Gaussian [13]. In
such cases, the PF can be used [6], which is not limited to linear or
Gaussian assumptions.

The lack of prior knowledge about the TFR distribution hinders
the choice of the right approach for its estimation and tracking (over
pulse index m) the TFR. Even if this information were available,
knowledge of the distribution parameters would be necessary for the
proper design of the Bayesian filter or any of its approximations. In
this paper, we are concerned with estimating and tracking h(m) from
the received signal r(m) without any prior information about h(m)

or interference terms c(m) and n(m).

3. TFR ESTIMATION AND TRACKING

In this section, we formulate of TFR estimation as a nonparametric
Bayesian iHMM estimation problem and provide its solution.

3.1. TFR Modeling Using HMM

In related previous works, h(m) is considered as a random vector
with known distribution and generating model. This vector is esti-
mated recursively over the pulse index m using a Bayesian filter [8].
Alternatively, we propose estimating h(m) = [h

(m)
1 , · · · , h(m)

l , · · · ,
h
(m)
Lr

]T , where h(m)
l denotes the lth frequency sample, by consider-

ing a recursion over the frequency index l within each pulse. The
fact that the observations r(m) = [r

(m)
1 , , · · · , r(m)

l · · · , r(m)
Lr

]T are
quantized to a finite number of quantization levels allows us to as-
sume a discrete model for the amplitudes of the TFR samples. Re-
gardless of the TFR generating model or distribution, the finite set
of values taken by h(m)

l can be seen as the possible states in a scalar
stochastic finite state machine (SFSM). In the SFSM, the sample
amplitude at frequency l can transit from a given state to any other
state at frequency l + 1 according to a certain probability distribu-
tion. Specifically, the TFR samples for each pulse can be modeled
as an HMM, a type of SFSM in which the output value (i.e. r(m)

l )
associated to each state is also stochastic and the states are hidden
from the observer [14].

To apply the HMM to the TFR at themth pulse, the components
of h(m) are considered as the hidden state sequence, while the com-
ponents of r(m) are the observations. Each sample of h(m) or r(m)

can take any value from the discrete level sets, Q = {q1, · · · , qNs}
or O = {o1, · · · , oNo}, respectively. Without loss of generality, it
is assumed that Ns = No ≡ N , where N denotes the quantization
levels of the used ADC. Within the mth pulse, we assume that the
components of h(m) form a Markov chain of first order, that is

Pr(h(m)
l = qi|h(m)

l−1 = qj , · · · , h(m)
1 = qk) =

Pr(h(m)
l = qi|h(m)

l−1 = qk) (3)

where 1 ≤ i, j, k ≤ N and 1 ≤ l ≤ LR. We also assume a
homogeneous HMM within the same pulse, but not from pulse to
pulse. That is, the probabilities in (3) do not depend on l but may
change with m. To simplify the notation, we temporarily drop the
index m noting that the following steps are applied to each pulse.

To estimate the hidden states, the HMM structure should be
specified a priori. For 1 ≤ l ≤ Lr , this structure is defined by:
(1) the discrete sets of states Q and observations O; (2) the state

transition matrix A = [aij ] = Pr(hl = qj |hl−1 = qi), 1 ≤ i, j ≤
N ; (3) the emission matrix B = [bij ] = Pr(rl = oj |hl = qi),
1 ≤ i, j ≤ N . Both A and B do not depend on l based on the ho-
mogeneity assumption. To achieve both low quantization noise and
high dynamic range, the number of bits of the ADC can be as high as
14 bits or more [15]. This implies transition and emission matrices
of very high dimensions, let alone the difficulty of obtaining prior
knowledge about them.

3.2. Employing iHMM in TFR Modeling

Inspired by the nonparametric Bayesian models, the problem of de-
termining A and B can be avoided using an iHMM with unbounded
number of states [16]. In iHMM, only a finite number of states, say
K, are invoked initially atm = 1; K may grow or shrink form > 1
depending on r(m). Each row of A or B is modeled using a Dirich-
let process (DP), also known as stick-breaking process, with possibly
unbounded number of components (in our case K ≤ N ). As both
r and h are for the same target, the DP of the rows of A as well as
those of the rows of B should be linked. To model this relationship,
we propose using the hierarchical DP (HDP) [17].

For any γ > 0, we define the infinite length random vector
β = [βi]

∞
i=1 , Stick(γ) as [17]

βi = β̂iΠ
i−1
k=1(1− β̂k), β̂k

iid∼ Beta(1, γ) (4)

where Beta(1, γ) denotes the Beta distribution with shape parame-
ters 1 and γ. The ith row of A of length K is

ai = [aij , · · · , aiK ] ∼ Dir(αβ1, · · · , αβK) (5)

where Dir denotes the Dirichlet distribution and α is a non-negative
scalar. The emission matrix B is generated in the same way as in
(4) and (5), but using βe, γe, and αe. Therefore, using HDP, the
rows of A are linked through the common vector β. Similarly, the
rows of B are linked through the common vector βe. Hence, using
only four hyperparameters α, αe, γ, γe, the iHMM model is fully
specified and controlled.

3.3. TFR Estimation Using iHMM

In the following, we show how to infer the state sequence h and
the iHMM hyperparameters for each pulse. The first step in esti-
mating h is to estimate the posterior probability density function
(pdf) f(hl|r1:l) of the lth sample within the Lr samples, where
r1:l = [r1, · · · , rl]. The canonical state inference algorithm is the
Gibbs sampler, however, its convergence is slow, especially with cor-
related data. Moreover, the posterior and the prior pdfs of h should
be conjugate. To avoid these drawbacks, we adopt another inference
algorithm, the beam sampling [18].

The beam sampler utilizes auxiliary variables to reduce the states
of A and B at each l resulting in a finite number of states. Conse-
quently, dynamic programming algorithms can be used to estimate
the posterior pdf of the states as in the conventional HMM. Using
the auxiliary variables u1:Lr = [u1, · · · , uLr ], the posterior pdf can
be estimated as [18]

f(hl|r1:Lr , u1:Lr ) ∝ f(rl|hl)∑
ul<Pr(hl|hl−1)

f(hl−1|r1:l−1, u1:l−1) (6)

In (6), the sum at each l is evaluated only over a limited number
of states, say Ku, out of the invoked states K, whose transition
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probabilities exceed a threshold ul. The choice of ul is important.
On one hand, a large ul may result in underestimating the actual
number of states. On the other hand, a small ul may result in a
higher number of states that increases the complexity of the model
and the resulting error. The threshold is conventionally taken as
ul ∼ U(0, Pr(hLr |hl−1)) with U(a, b) denoting the uniform dis-
tribution in the interval [a, b] [16], or ul ∼ Pr(hLr |hl−1)Beta(w, z)
with w, z > 0 [19]. In the latter case, the appropriate choices of w
and z, which have not been specified in the literature, should force
ul to be either close to 0 or Pr(hLr |hl−1). In this work, we propose
adjusting ul depending on the pulse number m. Since there is no
prior information about the true states of h(m), the model is initial-
ized at m = 0 with a low K. As m advances, the number of the
invoked states K grows and, consequently, their relative transition
probabilities tends to be lower. Therefore, ul needs to be decreased
as m increases, otherwise the number of surviving states Ku will be
too low for an accurate estimation of h(m). The details of the choice
iHMM parameters are provided in Section 4.

Finally, to estimate the state sequence h, hLr is first sampled
using f(hLr |r1:Lr , u1:Lr ), then the backward induction is used to
estimate the remaining states from the posterior pdf as [18]

f(hl|hl+1, r1:Lr , u1:Lr ) ∝ f(hl+1|hl, ul+1)f(hl|r1:l, u1:l) (7)

The process of estimating h(m) is performed for each received signal
r(m), where the hyperparameters inferred based on h(m−1) are used
in generating A and B to estimate h(m).

After inferring the states, we infer the model hyperparameters
α, γ, αe, and γe as a second step. For A, at m = 0 the two hyper-
parameters α and γ are initialized as [18]

α(0) ∼ Gamma(aα, bα), γ(0) ∼ Gamma(aγ , bγ), (8)

where Gamma(a, b) denotes the Gamma distribution with shape pa-
rameter a and inverse scale parameter b, where aα, bα, aγ , bγ > 0.
At the mth pulse, α(m) is generated as [20, eq. (47)]

α(m) ∼ Gamma(aα + E −
Ku∑
k=1

ek, bα −
Ku∑
k=1

log qk), (9)

where ek is a binary variable that randomly takes a value of 0
or 1, E is the number of inferred states within h(m) obtained af-
ter solving the dynamic program in the TFR inference step, and
qk ∼ Beta(α(m−1) + 1, n) with n being the number of times each
state of E is visited. Moreover, γ(m) is obtained by [17, eq. (13)]

γ(m) ∼πηGamma(aγ + E, bγ − log(η))+

(1− πη)Gamma(aγ + E − 1, bγ − log(η)) (10)

where πη = (aγ+E−1)/(E(bγ−log(η))) and η ∼ Beta(γ(m−1)+
1, E). Equations (8), (9) and (10) can be applied to infer αe, γe

given hl using aαe , bγe as initialization parameters, Ke
u as the num-

ber of surviving output values, ne as the number of times an output
value is visited, and Ee as the total number of visited observations.

4. PERFORMANCE EVALUATION

In this section we evaluate the TFR estimation accuracy of the pro-
posed iHMM-based method and compare it to the particle and KF
through Monte Carlo simulations.

4.1. Simulation Setup

The radar transmitted waveform g̃ is simulated as a linear frequency
modulated signal with 1 MHz bandwidth and 4 µs pulse width sam-
pled at 2.5 MHz and the ADC hasN = 214 quantization levels. The
TFR is modeled as a state-space model h(m) = e−Tr/ζh(m−1) +
v(m−1) [8], where ζ is the decay time constant, Tr is the radar pulse
repetition interval, and v(m−1) is the white Gaussian state noise vec-
tor in frequency domain. Both v(m−1) and h(m−1) are assumed to
be independent. While the iHMM is not limited to a linear state-
space model, we adhere to it in this paper to compare the proposed
method with the literature [8, 9]. The TFR is initialized as a Gaus-
sian or non-Gaussian vector, with Lt = 4 and Tr/ζ = 0.001. The
non-Gaussian h̃(m) is represented by a K−distributed vector gen-
erated from a spherical invariant random process [21, 22]. In both
cases, h̃(m) has a zero mean and covariance matrix Σh = I, where
I is the Lt × Lt identity matrix. The clutter vector c̃ is generated
in the same way as h for both Gaussian and K-distributions with a
covariance matrix Σc = [0.9|i−j|], 1 ≤ i, j ≤ Ls.

The estimation error is calculated overM = 16 pulses using the
normalized root mean square error (NRMSE) defined as

ε(m) =‖h(m) − ĥ(m)‖2/‖h̄‖2 (11)

where h(m) and ĥ(m) are the true and estimated TFR at the mth
pulse, respectively, h̄ is the sample mean of the true TFR over the
16 pulses, and ‖ · ‖2 denotes the `2-norm. The NRMSE is averaged
over 250 trials.

The performance of the proposed method is compared to the KF
in the case of Gaussian h(m) and c(m). The minimum mean square
error (MMSE) estimator is used to initialize the KF and the final
estimate is taken after 50 iterations. In the case of K-distributed
h(m) and/or c(m), we apply the PF with Np = 50 particles, with
the ith particle at the m-th pulse having a weight w(m)

i calculated
as [23, eq. (63)]

w
(m)
i ∝ w(m−1)

i f(r(m)|h(m)) i = 1, · · · , Np (12)

where f(r(m)|h(m)) is the likelihood pdf of r(m), which is as de-
duced for the K- distributed clutter in [24]. To overcome the de-
generacy problem, the particles with negligible weights are removed
and Np particles are resampled, each with a weight 1/Np [23].

In the iHMM, we found through simulations that ul =
10−κU(0, Pr(ht|ht−1)), with κ = 0.15m, is an appropriate value.
There are no recommended values for aα, aγ and bα, bγ in the liter-
ature, but we found aα, aγ ∼ U(1, 10) and bα, bγ ∼ U(0.1, 1) to be
appropriate. Again, these choices are independent on the distribu-
tion of h(m) or c(m). For the PF and KF, we assume three scenarios.
In the first scenario the filters have perfect prior knowledge about
the statistics parameters of h(m), c(m), and n(m). The second case
assumes partial knowledge of the latter three vectors, that is, the dis-
tributions are known, but not their parameters. In the third case, the
filters have no prior knowledge about the three vectors.

4.2. Results and Discussion

Assuming Gaussian h(m), c(m) and linear h(m) model, the KF can
be used to estimate h(m). Fig. 1 shows that the KF provides the low-
est error atm = 1 compared to the PF and iHMM. However, beyond
m = 1, its error is proportional to m at a higher rate than that of the
PF and above the iHMM. This lower error is ascribed to the fact that
the KF is the exact Bayesian filter for the TFR estimation problem
under the assumption of Gaussian h(m) and c(m). Nevertheless, as
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Fig. 1. Estimation error of Gaussian TFR in Gaussian clutter.
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Fig. 2. Estimation error of Gaussian TFR in jamming and Gaussian
clutter (m = 1).

h(m) itself is a random vector, the model mismatch increases with
the accumulation of noise as m increases.

However, even this relative lower error of the KF at m = 1
is not guaranteed in all operating conditions. Specifically, when the
radar system is under the effect of jamming. We use the pulsed noise
jamming (PNJ) and the convolution noise jamming (CNJ) to evalu-
ate the performance of the three methods. Both are generated by
a repeater jammer matched to the radar pulse width and repetition
interval [25]. CNJ is the result of the convolution between the inter-
cepted radar pulse and a noise pulse generated by the jammer. Fig. 2
shows ε at m = 1 under the effect of the PNJ and CNJ versus differ-
ent jamming-to-signal ratios (JSRs). Compared to the jamming-free
case, the KF is vulnerable to both jamming techniques, especially to
the CNJ, with a higher ε that increases with the (JSR). For the PF,
ε is higher at all JSR values in the case of PNJ, while ε increases
significantly at higher JSRs under the effect of the CNJ. Except for
the small increase in ε at all JSRs, the iHMM shows better stability
in terms of ε in the presence of both PNJ and CNG.

Fig. 3 shows ε of the K−distributed h(m) and c(m) for both
the iHMM and PF. Even when the PF has perfect knowledge about
both h(m) and c(m), ε increases with m. If this perfect knowledge
is not provided, ε is higher and increases in a faster rate. This is
true whether the PF has prior partial knowledge or it has no infor-
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Fig. 3. Estimation error of K−distributed TFR and clutter.
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Fig. 4. Estimation error of Gaussian TFR in K−distributed clutter.

mation about h(m) and c(m). On the contrary, the iHMM shows a
lower ε at pulses and it does not increase with m; it even slightly
decreases. Fig. 4 shows the performance for the Gaussian h(m) with
K−distributed c(m). It is observed that the iHMM shows the same
error trend as for the K−distributed h(m), but with a slight increase
in ε at all m. While the PF introduces a lower ε at m = 1 relative to
its error with the K−distributed h(m), it reaches approximately the
same error at the m = 16 for the three cases considered.

5. CONCLUSION

In this paper we delved into the problem of Gaussian and non-
Gaussian TFR estimation under the assumption of Gaussian and
non-Gaussian clutter. In this context, the performance of the non-
parametric Bayesian framework represented by the iHMM is com-
pared to the classic Bayesian frameworks of the KF and PF. Com-
pared to the latter filters, the iHMM improves the tracking accuracy
of the TFR without any prior knowledge about its statistics or that
of the interference, even if the filters know perfectly the statistical
parameters of the TFR and interference. These promising results en-
courage further research in employing the nonparametric Bayesian
methods in cognitive radar applications.
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