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ABSTRACT

This paper investigates the effects of directional interference on
the accuracy of time-varying delay estimates obtained with a passive
array of sensors. To this end, the output of the i * sensor is modeled as
x()=a(t—di()+n(~3;)+vi(t), where a(), NGt) and v;¢) are
uncorrelated Gaussian random processes representing a moving-source
signal, the directional interference, and the background noise, respec-
tively. The time-varying delays d;(¢) for the moving-source signal are
slowly-varying functions of time parametrized by an unknown vector
0. The time delays §; for the interference signal are known. Using the
general results on array processing in semi-stationary environments
recently derived by the authors, new expressions for the Cramér-Rao
lower bound (CRLB) on the error covariance matrix of estimates of 8
are obtained. These expressions are used to investigate the effects of
directional interference on the estimation accuracy of differential
Doppler shift under simplifying assumptions. Both qualitative and
numerical results are presented.

Key-words: array processing, time delay estimation, Cramér-Rao
lower bound

L. INTRODUCTION

Several methods proposed for the localization of a moving source
with a passive array of sensors are based on the estimation of the
time-varying delay functions between the source signal components
received at the various sensors [1]. In this respect, the Cramér-Rao
lower bound (CRLB) on time-varying delay estimator variance pro-
vides a benchmark against which the performance of the various local-
jzation methods can be compared. Results currently available in the
literature for the CRLB assume that the noise field on which is super-
posed the signal radiated by the moving source is spatially uncorre-
lated [2]. In practical applications, however, the noise field may con-
tain spatially correlated components due to the presence of directional
sources of interference in the environment. Because of a lack of a
general approach for evaluating the CRLB in this case, the effects of
directional interference on the estimation accuracy of time-varying
delays have not been investigated yet.

In this paper, we use the general results on array processing in
semi-stationary environments recently derived by the authors [3] to
conduct such an investigation. To this end, we consider an arbitrary
array configuration of M sensors and we model the output of the it
sensor as x;(£) =a (t—d;(£)) +M(t—5;) + v; (), where a (¢), n(¢) and v;(2)
are zero-mean uncorrelated stationary Gaussian random processes
representing the moving-source signal, the directional interference,
and the background noise, respectively. The time-varying delays d;(t)
for the moving-source signal are slowly-varying functions of time
parametrized by an unknown vector . The condition of slow varia-
tion imposed on the delays is not very restrictive and is satisfied in
most practical applications. The time delays §; for the interference
signal are assumed to be known. Using the results of [3], new expres-
sions for the CRLB on the error covariance matrix of estimates of 0
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are obtained. These expressions are used to investigate the effects of
directional interference on the estimation accuracy of differential
Doppler shift under certain simplifying assumptions.

II. BACKGROUND

In this section, we briefly review some of the concepts and results
of [3) on array processing in semi-stationary environments. The role
of the CRLB in the context of processor performance evaluation is
also given further consideration.

Consider the physical situation described in Fig. 1, where a pas-
sive array of M sensors is used to monitor a "slowly" moving source
(S) in the presence of additive noise which may originate from various
sources, including possibly a localized source of interference (I).

S,a()
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M

Fig. 1. M-sensor array monitoring a moving source in the
presence of noise.

Let the sensor output vector x(t)=[x1(t),...,xM(t)]T, where the super-
script 7 denotes transposition, be given by

x()= [ L(tuya@)du +n(@), )
where a(f) is the signal transmitted by the moving source,
n(t)=[n1(t),...,nM(t)]T is the sensor noise vector, and L (z,u) is the
impulse response of the transmission channel between the source and
the sensors. Finally, assume that a(t) and n(t) are zero-mean,
uncorrelated, stationary Gaussian random processes with power spec-
tral densities A (w) and N (w), respectively.

In a typical source localization problem, the position and track of
the moving source are defined in terms of a parameter vector 8. The
components of 8 might be, for example, the bearing and bearing rate
of the source relative to a chosen orientation. This information is
embedded in the channel impulse response L(z,u) which explicitly
depends on the parameter vector 8. The localization problem then
consists in processing the sensor outputs in such a way as to obtain an

“estimate of 6, generally denoted by 8(x).
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The CRLB sets a lower bound on the error covariance matrix of
any unbiased estimator 6(x) of 6. More precisely, it asserts that

Eo{[6(x)-0][0(x) 017} 2 J(8)™ @)

where Ej is the expectation conditioned on 0, d; =9/06; denotes a par-
tial derivative with respect to 9;, the i th component of 0, and J(0) is a
square matrix known as the Fisher information matrix (FIM). The
practical value of the CRLB lies mostly in the following property [2):
under the assumption of long observation interval, it is theoretically
possible to construct an estimator (the maximum likelihood estimator)
whose error covariance matrix reaches the absolute minimum
predicted by the CRLB. In this respect, the CRLB provides a bench-
mark against which the performance of the various localization
methods can be compared.

In the present context, however, the evaluation of the CRLB is
considerably complicated by the fact that the channel impulse
response L (¢,u) in (1) is not time-invariant. This follows because of
the relative source-receiver motion in Fig. 1. This problem is partially
resolved in [2] by assuming that the sensor noise is spatially uncorre-
lated, i.e. that E{n;(t)nj(u)]=0 whenever i #j. But in many applica-
tions, this assumption is not satisfied. This occurs, for example, when
the noise field contains a directional plane wave component such as in
Fig. 1.

In [3], a new approach to array processing in non-stationary
environments which is not based on the assumption of spatially
uncorrelated noise is presented. The main idea is to exploit the
slowly-varying nature of L (t,u) encountered in most applications. In
this approach, L (t,u) is characterized by a time-varying transfer func-
tion known as the system function and defined by

Cho)= [ Lu)e ™ dy. 3

It is then required that the time variations of C (¢, @) occur over inter-
vals much larger than the channel correlation time. Accordingly, the
channel impulse response L(f,u) is referred to as semi-stationary.
This assumption results in tremendous analytical simplifications and
makes it possible to obtain relatively simple expressions for the com-
ponents of the FIM. More precisely, it can be shown that

Ji®=5[fA3CT N 19,0 G CH+C G oCH

-CGHQG CHINT Cdwdt @

where the superscript H denotes complex conjugate transposition and
G=A/I(1+AQ), &)
Q=ctin-c. ()

Note that in (4)-(6), the dependence of A, C, G, N and Q on t, ® and ©
has been omitted for convenience. In the next section, we shall spe-
cialize (4) to the problem of time-varying delay estimation in the pres-
ence of directional interference.

III. CRLB FOR TIME-VARYING DELAY ESTIMATION
IN DIRECTIONAL NOISE FIELD

Consider again the situation represented in Fig. 1. Suppose that
the signal transmission from the source to the sensors is ideal and that
the noise field consists of a single, localized source of interference
superposed on a spatially uncorrelated background noise. Under these
conditions, the output of the i*% sensor can be written as

xi(2) = a (@ —di(9)) + NE—;) + vi(e). )

where 1(?) is the interference signal, v;(r) is the spatially uncorrelated
background noise component, d;(t) is the time-varying transmission
delay between the source and the i th sensor, and J; is the transmission
delay for the interference. In the following analysis, it is assumed that
1(t) and v;(¢) (i =1,...,M) are zero-mean uncorrelated stationary Gaus-
sian random processes with power spectral densities Nj(w) and Np(w),
respectively. Note that Np(w), N;(®) and the §; are assumed known,
while the delays d;(r) depend explicitly on the unknown parameter
vector 6 to be estimated.

In light of the observation model (1), the channel impulse
response L (¢,u) corresponding to (7) is given by

L(tu) = 6(r) [3(t~d 1 (¢)-u), .., (¢ ~dpg (¢ )-u))" 8
where 8(¢) represents the Dirac delta function and

1, -TR<t<T2
=10, otherwise &

is introduced to account for the finite observation window. In this
respect, T represents the total observation interval,

The conditions under which L (z,4) (8) is semi-stationary have
been investigated in [3] and are summarized below. Let B denote the
system bandwidth and suppose that |d;(t)| <Dg and |d;’(r)| <D,
where D and D are the maximum delay and delay rate, respectively.
Then, for L (#,u4) to be semi-stationary, the following asymptotic con-
ditions must be satisfied: BT »1, DT <1, Dy«1 and
BDyD | < 1. These conditions, whose interpretation can be found in
{3], are satisfied in most practical applications because of the usually
low source speed when compared to the signal transmission velocity.

The first step in the specialization of (4) to the above observation
model is to evaluate the system function C (¢, ®) (3), the inverse noise
power spectral density N (@' and the functions G(t,0) (5) and
Q(1,0) (6) . In this case, the evaluation of C(f,®) is trivial and the
result is

C)=0() [/, e/ WO, (10)
From (7) and the assumptions made on the noise field, we have
N (@) = Ny()D (@)D () + N (@)ly (11)
where Iy, is the MxM identity matrix and
D@ =[e’™,. e/ (12)

is the steering vector of the interference source. The inverse of N (®)
(11) can be found by applying the matrix inversion lemma. The result
is

DA | _8w) H
N (w)= ) Iy i D (@)D" (w)] 13)
where
g(@= TIINR, 14
Ni(w)
=M-—-, 15
R =M N 3

The quantity INR, (15) is the interference-to-noise ratio at the output
of a conventional beamformer steered at the interference. The quan-
tity g(w) (14) is a Wiener type shaping function satisfying
0 < g(m) <1, with g (®)=1 only in the limit INR, = oo,

Using (10) and (13), the following expressions for (z, ) (6) and
G (¢, ®) (5) can be obtained:

__M _ 2

Q¢ 0)= Np(@) [1-g(@)|ptt, )|, (16)
Gw)= A @) = an

1+ SNR,[1 — g ()| plt, @) [*]

where
- A(w) 18
SNR, MNB(m)’~ (18)
p(l,ﬂ))=i % ejm[dl‘(t)_sl‘]. (19)
M2

The quantity SNR,, represents the signal-to-noise ratio at the output of
a conventional beamformer aimed at a fixed source with PSD A (w).
For a fixed value of r=t,, the quantity p(f,,®) is analogous to the
complex response of a conventional beamformer steered along
C(t,,®) to a directional wavefront with steering vector D (w).
Observe that 0 < | p(r, w)| < 1, with |p(t, w)| =1 only when d“(t)-ﬁu
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is constant for all values of J, i.e. when the source and the interference
are perfectly aligned in the delay space.

To simplify the evaluation of the FIM, it is assumed that

M M
> du®)= 3 §,=0. 20)
p=1 p=1

In practice, this condition can always be satisfied by choosing the
reference signals for the moving source and the directional interfer-
ence at appropriate locations. Using (10), (13), (16), (17) and (20), a
tedious but otherwise straightforward calculation reveals that for the
observation model considered in this application, the elements J,-j(e)
(4) of the FIM are given by

T2 o SNR02
T
T e 1+SNRo(1-g1p|%)

F;;

{Ej + ————————} dodt, @y
1+ SNRo(1-g lp1%)

where

o 2 M .
Ej=—(-g|pl*) X 9idy9;dy~-g0ip0;p’, (22)
M p=1
Fy=g%p" 3ipo;lpl*. 23)
In the absence of interference, g () (14) is null and these expressions
reduce to those given in [2], as expected.

IV. EFFECTS OF INTERFERENCE ON DIFFERENTIAL
DOPPLER SHIFT ESTIMATION

Equations (21)-(23) can be used to evaluate the CRLB (2) regard-

less of the particular parametrization © used to characterize the delay

functions d;(¢) in (7). However, to obtain a better understanding of the

effects of directional interference on the CRLB, as predicted by these

general expressions, it is preferable to focus our attention on a simple

example involving only a few parameters. To this end, consider a

two-sensor array (M =2) and suppose that the delay functions d;(r)

vary linearly with time, so that

di(t)=-dy(t)=0p + 611, )]

8 =3, =3, 25)

where 6y and 8 are unknown parameters to be estimated. In physical

terms, the parameter Oy represents the time average value of dy(7)

over the observation interval ~T/2<¢<T/2, while 0, T represents the

total variation in d;(t) over this interval. The parameter 0, is also

referred to as the differential Doppler shift [2]. For d;(r) (24) and §;
(25), the complex response (19) is given by

p(t, @) = cose(@—8o+91 £). @6
Substituting (24) and (26) in (21)-(23), we obtain
™7 e SNR?2
@=L [ [k "
Jij®)= - _TJ'/2 l O T SNR, (1~ gcos’0)

2602 2
(1-g+ 2g “sin“ocos a2 }dods @n
1+ SNR,(1—-gcos“o)

where
o= (0 —8+017). (28)

Equation (27) clearly shows one of the effects of interference on the
FIM: the introduction of "oscillations" in the integrand of J;;(6), which
can be interpreted as the time-frequency distribution of mutual infor-
mation. These oscillations, characterized by the trigonometric func-
tions of o, become more and more important as the level of interfer-
ence g () increases from O to 1. In this respect, it is interesting to
compare the expressions of J;;(6) obtained from (27) in the limiting
cases g (0)=0 (i.e. INR,=0) and g (@)=1 (i.e. INR; = o).

When g (0)=0,
TR o 2
... SNRZ
Ji®=-1 Wttt ——— dodt. 29
i =5 _Tj,zi 1+SNR,

In this case, the time-frequency distribution of information is smooth
(i.e. no oscillations). Since SNR,, is independent of 1, the integral over
t in (29) can be performed separately. In particular, we find that
J10=0 regardless of the shape of the spectral function SNR,. As
already indicated in [2], this means that there is no mutual information
between 6y and 9, or equivalently, that the estimation errors associ-
ated with 6y and 8, as predicted by the CRLB, are uncorrelated. Also
of interest is the behavior of J;;(6) (29) as a function of SNR,: at low
SNR, (SNR, «1), J;;(8) varies like SNR2, while at high SNR,
(SNR, > 1), J;;(8) varies like SNR,.
The situation is quite different in the limit g (®)=co where (27)
reduces to
TR o

... SNR,sinocoso
J® =1 [ [ttt 2
~T72—0

14 SNR,sin*a

In this case, the time-frequency distribution of mutual information is
completely dominated by oscillations. Because of this complex
behavior, it is no longer possible to perform the integral over ¢
separately and in general, J19#0. The presence of non-zero off-
diagonal elements in the FIM means that the estimation errors of 6p
and 0; will now be correlated. Another very interesting feature of
(30) is its behavior as a function of SNR,. Indeed, at high SNR,
(SNR, > 1), (30) becomes independent of SNR, and reduces to
T B
J;,-(O):;lt— 1{ | o4 cottadadr, (31)
-Tr2-8

2 doodt. (30)

where B represents the signal bandwidth. Observe that (31) can also
be obtained from (27) by letting Np(w) — 0. In this case, the back-
ground noise is null and the received signal is contaminated by direc-
tional interference alone. The CRLB obtained by inverting the FIM
(31) therefore represents the performance limit on time delay estima-
tion variance due solely to the presence of directional interference.

To investigate further the effects of interference on the CRLB,
we must have recourse to numerical evaluation of (27). To simplify
the discussion, we assume that 6y is known and we concentrate on the
effects of directional interference on the estimation of the differential
Doppler shift 6; alone. When 68 is known, the CRLB (2) reduces to

Eo{(6;-61)*) 2 11/11(6). 32)

The effects of interference on the CRLB are more easily interpreted in
terms of the degradation ratio DR, simply defined as the CRLB (32)
normalized by its value in the absence of interference. That is,

- J110)Ig=0
J11(9)

where the subscript g =0 indicates that g () is set equal to zero in
@n.

For the numerical evaluation of DR (33), the functions INR,(®)
(15) and SNR,(w) (18) are modeled as flat low-pass spectra with
bandwidth B and amplitude INR, and SNR,, respectively. The results
of the computations are shown in Fig. 2-5. In each of these figures,
which correspond to different values of SNR, ranging from -10dB to
+10dB, DR is plotted as a function B (8y— &) for BT0; =1 and INR,
= -10dB, 0dB, 10dB and +eo. The quantity B(6y—8p) represents the
delay separation between the moving source and the directional
interference at time £=0, normalized by the source signal correlation
time 1/B, while BT9, represents the total variation in d, (f) (24), again
normalized by 1/B.

To begin, consider Fig. 2, which corresponds to SNR, = -10dB.
At very low interference-to-noise ratio, i.e. INR, = -10dB, the effect
of interference on the CRLB (32) is negligible and DR remains close
to 1. As expected, DR increases with INR, and for INR, = 0dB, DR
reaches a value close to 1.7 (2.3dB). It is interesting to note that DR
remains close to this value even when B (6 —3p) is large. In other
words, the negative effects of directional interference on the estimator
variance do not disappear as the distance between the source and the
interference in the delay space increases. The presence of oscillations

(33
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Fig. 2. DR as a function of B (8 — 8y) for INR, = -10dB, 0dB, 10dB
and +eo, SNR, = -10dB, and BT9; = 1.
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INR, =0dB

INR, = -104B
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B (80—50)

Fig. 3. DR as a function of B (8p — &) for INR, = -10dB, 0dB, 10dB
and +oo, SNR, = -3dB, and BT0; = 1.
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B (89 —39)

Fig. 4. DR as a function of B (8 — &) for INR, = -10dB, 0dB, 10dB
and +oo, SNR, = 0dB, and BT6, = 1.
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B (60 —59)

Fig. 5. DR as a fanction of B (8, - ) for INR, = -10dB, 0dB, 10dB
and 40, SNR,, = 10dB, and BT6, =1.

in the curves corresponding to larger values of INR, is a direct conse-
quence of the oscillatory nature of the integrand in (27). The exact
shapes of these oscillations as well as the positions of the relative
maximum and minimum depend on the values of SNR, and BT6,.
For instance, in Fig. 2, the curves corresponding to INR, = 10dB and
INR, = +oo have a main peak at B (6 —89)=0 and a secondary one at
B (8p—3¢)=2. However, as SNR, increases while BT9, remains con-
stant (Fig. 3-7), the amplitude of the peaks changes so that the secon-
dary peak becomes the dominant one and vice-versa. This result is
indeed remarkable for it means that the effects of directional interfer-
ence on the CRLB can be worst when the moving source remains dis-
tinct from the interference than when it actually crosses the interfer-
ence, which is the case when B (8 —8g)=0. This very interesting and
previously unknown phenomenon can be attributed to the complex
behavior of the integrand in (27).

V. CONCLUSIONS

In this paper, the effects of directional interference on the accu-
racy of time-varying delay estimates obtained with a passive array of
sensors were investigated. First, the results of [3] were used to derive
new expressions for the Fisher information matrix of the sensor out-
puts when the latter contain a directional noise component. These
expressions, which apply to arbitrary parametrizations of the time-
varying delay functions, were then specialized to the problem of dif-
ferential Doppler shift estimation with an array of 2 sensors.

Besides the overall deterioration in performance caused by the
introduction of interference, two important conclusions can be
reached. First, this deterioration does not disappear completely as the
average source interference separation is increased. Secondly, for
relatively small values of the separation, the deterioration behaves in
an oscillatory pattern and can actually be worst when the moving
source remains distinct from the interference than when it crosses the
interference during the observation interval.
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