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ABSTRACT

When a moving acoustic source is monitored with a passive
array of sensors, the differential propagation delays between the
signal components received at the array are time-varying. This
paper investigates both the structure and performance of the maxi-
mum likelihood (ML) estimator of slowly-varying time delays
when the received signals are contaminated by additive noise con-
taining a strongly directional component, due to the presence of a
fixed, localized source of interference in the acoustic environment.
The ML estimator is obtained by maximizing the output of the log-
likelihood processor. The latter is shown to consist of a slowly-
varying noise canceller followed by a minimum mean square error
estimator of the source signal and a correlator. Closed form expres-
sions are obtained for the Cramer-Rao lower bound (CRLB) on the
error covariance matrix of time-varying delay estimators. Finally,
the effects of directional interference on the CRLB are investigated
numerically for a simplified configuration consisting of two sensors
and linearly varying time delays.

1. INTRODUCTION

When a moving acoustic source is monitored with a passive
array of spatially distributed sensors, the differential propagation
delays between the signal components received at the individual
sensors are time-varying. By estimating these time-varying delay
functions, it is possible to obtain important information about the
location and track of the moving source [1]. The structure and per-
formance of the maximum likelihood (ML) estimator of time-
varying delay parameters have been studied extensively under the
assumptions of slowly moving sources and spatially uncorrelated
environmental noise field [2]-[3]. While the first assumption is
generally satisfied, because of the relatively large sound propaga-
tion velocity, this is not the case for the latter. Indeed, in many
applications, the noise field contains one or more spatially corre-
lated components due to the presence of directional sources of
interference in the acoustic environment. Because of mathematical
difficulties related to the non-stationary nature of the problem, the
structure and performance of the ML estimator of time-varying
delays in the presence of directional interference have not yet been
investigated. In this paper, we use the general results on array pro-
cessing in semi-stationary environments recently derived by the
authors [4] to conduct such an investigation.

II. OBSERVATION MODEL AND SEMI-STATIONARITY

Consider the physical situation shown in Fig. 1, where a pas-
sive array of M sensors is used to monitor a "slowly” moving
acoustic source (S) in the presence of additive environmental noise.
The total noise field consists of a directional component, qriginat-
ing from a fixed source of interference (I), superimposed on a spa-
tially uncorrelated background noise (not represented in the figure).
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Fig. 1. M-sensor array monitoring a slowly-moving source (S)
in the presence of directional interference (I).

Under the assumption tl'xat the signal transmission from the source
(and the interference) to the sensors is ideal, i.e. pure time delay,
the output of the i sensor can be written as

xi() = a(t—din) + n(t - &) +vi()), —TRstsTR, (1)

where a(z) is the moving-source signal, 7(¢) is the interference sig-
nal, v;(t) is a spatially uncorrelated background noise component,
d;(t) is the time-varying transmission delay between the source and
the i sensor, &; is the corresponding transmission delay for the
interference, and T is the duration of the observation interval. In
the following analysis, it is assumed that, a(r), n(t) and v(t)
(i=1,..., M) are zero-mean uncorrelated stationary Gaussian ran-
dom processes with power spectral densities A(w), N;(w) and
N g(w), respectively. Note that A(w), Ng(@), N;(@) and the J; are
assumed known, while the delays d;(¢) are unknown. )

In a typical source localization problem, the position and
track of the moving source are defined in terms of a parameter vec-
tor 8. The components of 8 might be, for example, the bearing and
bearing rate of the source relative to a chosen orientation. This
information is embedded in the time-varying delay functions d;(t)
which depend explicitly on the parameter vector 6, which is
unknown a priori. The localization problem then consists in pro-
cessing the sensor outputs in such a way as to obtain an estimate of
6, generally denoted 4(x). In this paper, we shall be concemned
with the maximum likelihood (ML) estimator of 6.

The evaluation of the ML estimator of 8 and the statistical
analysis of its performance are considerably complicated by the
fact that the linear transformation between the source signal a(t)
and the received signal component a(t — d;(t)), in (1), is not time-
invariant. While this problem can be partially resolved in the case
of spatially uncorrelated noise [2]-[3] (i.e. when () =0 in (1)), it
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remained until very recently a major obstacle in the detailed treat-
ment of more general ebservation models such as (1).

Iy [4], a new approach to array processing in non-stationary
environment was presented which does not rely on: the assumption
of spatially uncorrelated noise. This approach exploits the fact that
in. most applications of array processing, the transmission: channel
between the source: and the: sensors: varies only “slowly'” over time.
More specifically, if we denote by L(s, ) the impulse response of
the:channel and by C(r, @) its system function, defined as

)= [ Leraye ™ du, @

we find that in. many applications, C(z, @} remains almost contant
over time intervals on the order of the correlation time of Lk, u).
Tn:[4], the concept of semi-stationarity is introduced to characterize:
formally impulse responses satisfying this condition. Then, by
requiring that the transmission: channel in: an arbitrary array pro-
cessmg problem be semi-stationary, new and very general expres-

sions are: obtained for the log-likelihood processor of the sensor .

outputs and for the associated: Cramer-Rao lower bound on the
error covariance matrix of parameter estimates. In this paper, we
shall use these general expressions to analyse boith: the structure and
performance of the ML estimator of 6. Before doing this, however,
we: shall summarize the conditions: that must be satisfied by the
time-varying delay functions d;(r) in order for the corresponding
transmission channel to be semi-stationary.

For the: observation model (1); the chiannel impulse response
L(t,u} between the moving-source signal a(r) and the: vector of
received signal components [a(t —di(D));....a(t—dyuGH is
given by

L.u) = [6G - d@)— wh.... SG—dy@-w B
where () represents the Dirac delta function. The conditions
under which L{t, u) (3) is semi-stationary have been investigated in
[4], using appropriate. window: functions. to model the: finite (< oo}
time-bandwith product of any practical system. These conditions
are. summarized below. Let B denote the system bandwidth and
suppose: that Id;(t)f < Dy and Id;(1) S Dy, where Dy and Dy are
the maximum delay and delay rate, respectively. Then, for L(t, u)
1o be: semi-stationary, the following asymptotic conditions must be
satisfied: BT > 1, Dof/T < 1, Dy« 1 and BDyD; <« 1. These
conditions, whose interpretations can be found in [4], are. satisfied
in: most applications because of the usually small source speed
when compared. to:the: signal transmission velocity.

II. ML ESTIMATOR

. The ML estimator of the parameter vector 6, denoted Gy (x),
is obtained by maximizing the log-likelihood function (LLF) of the
sensor outputs, denoted In:A(x; 8), over a set of a priori parameter
values 6. For the Gaussian observation model under consideration:
here, the LLF can be written in the form

Ao =} ( [ Y @and - 1y} @

where the signals y(t} and d{(r) are obtained from the observed sen-
sor cutput signals x;(r) by means of linear filtering operations and
where [, is 4 bias term independent of the observed signals. Note
however, that the filtering operations and [, depend on the
unknown parameter vector @ to be estimated.

Under the assumption of semi-stationarity, closed form:
expressions for the signals y(¢) and é(r) and the bias term {; can be
obtained quite simply by specializing the general results presented
in[4] to the observation model (I). Beginning with y(z), we find

¥ =5 [ Yo.0) ™ do ®
with V

Y@, o)y = Nota) [C7 ¢ )X (@) ~ glo)pt. @)D" (@) X(@)}. (6)
where

X@)= [ e @ o

C@,w)=[e/2H), ‘k@jm‘u@)’i}ﬂ‘ @)

Diw) =1l ., oouit O

Nw) .

(1

INR,, = M o 10y

. INR,

8@ = TR an

p(t.0)= 2 C*t, 0)D(@). (12)

In (7). X(@) represents the Fourier transform: of the observed sen-
sor output signal: x(z), taken over the entire: observation interval.
The quantity C(r, @) (8) is the system function associated with. the
impulse response (3). Note that €, @) can be: interpreted as a
time-varying steering vector. In a similar way, D(@) (9) is the
steering vector of the interference source. In(10), INR, represents
the interference-to-noise: ratio (in: the: absence of source signal): at
the-output of a conventional beamformer steered at the interference.

The quantity g(w) (11)isa Wnener«type frequency response: satisfy-
ing 0'< g(w) < 1, with g(w)=1 only in the limit INR,=co. For a
fixed value of t=t,, p(t, @) (12) is analogous to the complex
response of a conventional beamformer steered along C(t,, w), to a
directional wavefront with steering vector D(w). Observe that
0 <lp@t, @)l < 1, with lp@t, @)l=1 when d (t)—8, is constant for
all values of 4.

The term CHX in (6) can be. interpreted as the: output. of a
slowly varying beamformer continuously steered at the moving
source (whose l:l:ack is conditioned on the a priori value of @),
while the term DA X corresponds to the output: of a. conventional
beamformer aimed at the: fixed interference. The quantity Y (r, @)
can therefore: be: interpreted as the output of a narrow-band time-
varying. noise canceller, which differs from a conventional noise
canceller by the dependence in ¢ of p(¢, @) and C(t, @), More gen-
erally, y() (6) can be interpreted as the output of a wide-band noise
canceller continuously "steered” at the moving source.

Specialization of the: results: of [4] to the observation model
(D) yields the following expression for d{r) in (4):

)= 5{; _f GG.a) Y o)™ do 13
where Y(¢, @) is given by (6) and

1, o} = A@)
Gi.o)= T+ SNRL{L = z@pG.af] (14)
In (14}, the quantity
A@) .
SNRy, = M ——— N (m (15)

represents the signal-to-noise ratio at the output of a conventional
beamformer aimed at a. fixed source with, power spectral density
A(w). Atlow SNR,, G(1, ) is approximately given by A(w) and it
is therefore: independent of the unknown parameter vector 4. The
situation is more complicated for intermediate values: of SNR,
where in general, G(f, @) further depends on the: noise power spec-
tral densities: Ng(w) and N(w), and on: the parameter vector &
through the complex response p(t,@). We note however that at
very high SNR,,, G(f, @) is approximately given by

Gty = 2D

T — g(@ip. o] a9
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which is independent of A(w). These observations should be taken
into consideration at the implementation level.

Under the assumption of semi-stationarity, multiplication of
system functions in the time-frequency domain is equivalent to
convolution in the time domain. Accordingly, we conclude from
(13) that d(¢) can be obtained directly from y(z) by means of a fil-
tering operation with system function G(z, w). It can be shown that
4(r) is actually the minimum mean square error estimate of the
moving source signal a(r) from the observation x(t), -T/2<t<T/2.

Finally, for the bias term [/, in (4), the application of the
results of (4] yields the following result:

hh=o j j In {1+ SNR,[1 - g(@)p(t, o))} dowdr.  (17)

We note that this term depends only on SNR,, INR,, and the com-
plex response p(t, w). Again, different cases occur in the evalua-
tion of /, depending on the value of SNR,,.

The processor structure corresponding to the above equations
for the LLF is shown in Fig. 2. This processor, referred to as the
log-likelihood processor (LLP), consists of two functionally differ-
ent subprocessors, namely: a slowly time-varying noise canceller
(upper portion) followed by a quadratic post-processor (lower por-
tion). The noise canceller performs the operation (5)-(12) on the
sensor output signals x;(t). As indicated previously, it has one of
its beams continuously steered toward the moving source while the
other beam remains steered toward the fixed directional interfer-
ence. The quadratic post-processor filters the output y(t) of the
noise canceller to form the minimum mean square error estimate of
a(t), denoted 4(t), and then evaluates the scalar product of y(¢) and
4(t). Finally, the bias term /, is added. The ML estimator of 6 is
obtained by maximizing the output of this processor over the set of
a priori values for 8. In theory, this maximization must be carried
out in batch, i.e., once the observation of x(¢), -T2<t<T/2, is
available, In A(x; 6) is evaluated for all possible values of 8 in the
parameter space and then maximized. In practice, though, because
of computational limitations, the maximization can be achieved
sequentially over time with the use of a recursive algorithm such as
the Newton-Raphson algorithm.

IV.CRLB

The CRLB sets a lower bound on the error covariance matrix
of any unbiased estimator 9(x) of §. More precisely, it asserts that

Eo{td(x)-6)(8(x)-61T) 2 J(6) (18)

where E, is the expectation conditioned on 8 and J(6) is a square
matrix known as the Fisher information matrix (FIM). The practi-
cal value of the CRLB lies mostly in the following property: in the
small error regime (or equivalently, if the observation interval is
sufficiently long) the error covariance matrix of the ML estimator
of 6 reaches the absolute minimum predicted by the CRLB. In this
respect, the CRLB provides a realistic benchmark against which the
performance of an arbitrary estimator of  can be compared. In the
following discussion, we use the general results presented in {4] to
derive the FIM of the parameter vector @ associated with the obser-
vation model (1). We then use the resulting expressions to study
the effects of directional interference on the estimation accuracy of
time-varying delays, as predicted by the CRLB (18).
To simplify the evaluation of the FIM, it is assumed that

M M

Xdm=% 6,=0. a19)

u=1 u=1
In practice, this condition can be satisfied by taking the reference
signals for the moving source and the directional interference at the
proper locations. Making the appropriate specializations in the
general results of {4] and using (19), a tedious but otherwise
straightforward calculation reveals that for the observation model
(1), the elements J ;;(8) of the FIM are given by

x@®x) xuy(@®

D*(w) cla,w)

LD -
A4

..dt

—ly —4

A4

2InA(x; )

Fig. 2. LLP for ML estimation of time-varying delays
in the presence of directional interference.

T B

1 SNR,?
Jij(@)= 2 _f[ﬂ_g 1+ SNR,(1 - glpP%)
(E; + —F"— } dwadt (20)
¥ 7 1+ SNR,(1-¢glpP) ’
where
o’ P .
E,:,-=E(l—glpl )E)la;d,,a,-d,‘ - ga,'pa,-p (21)

Fy=g"p 3ipdjipP @2

In these expressions, B represents the source signal bandwidth (i.e.,
A(w)=0 for lwl > B), and 9;=9/06; denotes a partial derivative
with respect to 6;, the i** component of 6.

To obtain a better understanding of the effects of directional
interference on the estimation accuracy of time-varying delays, as
predicted by (20)-(22), it is preferable to focus our attention on a
simple example involving only a few unknown parameters with
direct physical interpretations. Consider a two-sensor array (M =2)
and suppose that the delay functions d;(z) vary linearly with time.
That is, let

~di(0) = 430 = § 6o+ 61 ) @3
-y =8 =16, 4
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where 8y and 6, are the unknown parameters to be estimated. Note
that the condition: (19 is satisfied by (23)-(24). The differential
delay corresponding to d(¢):(23) is given by

A@)= dyft)y— diy(r) = 6 + 6 % . @s)

Hence, 6y represents the differential delay at time £=0, while 6
represents: the total variation in differential delay over the observa-
tion interval. The normalized papameter 8i/T is equal to the time
derivative of A(z) at r=0, also referred to as the differential
Doppler shift.

For di(): (23} and &; (24Y, the complex response (12) is given
by

plt, @)= cosCwy)/2). 26)
y(ey= Alr)~ &g en
Substituting (23) and (26) in 20)-(22), we obtain
: T2 B 3
L O 3 i SNR2
Lot
t}(el T'* 5 I £ ﬁfz t TTSNRL( - p c’oﬁ’(wr(ﬂﬁ)}

Ea-g+ & sin¥(oy()) Jdwdr28)

1 + SNR (1 — g cos*(@y t)/2))

Equaxmn (28) clearly shows one of the effects of interference on
the: FIM: the introduction of "oscillations" in the integrand of
J(6); which: can be interpreted as the time-frequency distribution
of mutual information. These oscillations, characterized by the
trigonometric: functions of wy(t)/2, become more and more impor-
tant as the level of interference g(@) increases from O to 1.

To gain a deeper insight into’ the problem, the effects of direc-
tional interference on the CRLB were investigated numerically.
For this purpose, the: functions INR,(@) (10) and SNR, (@) (15)
were modeled as flat low-pass spectra with bandwidth: B and ampli-
tude: INR,, and SNR,, respectively. The equation (28) was used: to:
evaluate the: components of the FIM J(¢). The CRLB was then
obtained by formal inversion of J(@) as in (18). The results of
these computations appear in Fig. 3, which shows the components
00,01 and 11 of the CRLB as a funtion of B(6p—8o) for fixed val-
ues of B6y = I and SNR,, = 0dB, and for five different values of the
directional interference-to-noise ratio, namely INR,, = -10dB, 0dB,
3dB, 10dB and +oo. Note that the quantity B(6y—dp) represents
the time delay separation between the moving source signal and the
directional interference at time =0, normalized by the source sig-
nal correfation time 1/B, while B8, represents the total variation in
A(r) (25), again normalized by 1/B.

Many important observations can be made from Fig. 3. At
very low interference-to-noise ratio,. i.e. INR, = -10dB; the effect
of interference on the CRLB is negligible; that is, the CRLB is
nearly diagonal with diagonal elements almost equal to those that
would be obtained by setting g =0:in (28). As expected, there is a
performance degradation as INR, increases, and for = 0dB,
the: diagonal elements of the CRLB increase by a factor of approxi-
matly 1.7 2.3dB). It is interesting to note that this degradation
occurs regardiess of the time delay separation between the moving
source and the directional interference, i.e. B(6o— &). In practical
terms, this means that the degradation does not disappear as the
angular separation between the source and the interference
increases. We note however that for such values of INR,,, the off-
diagonal elements of the: CRLB remain close to zero, so that the
estimation.errors: in estimating 6y and 6y still remain uncorrelated.

At higher values of INR,, besides an overall deterioration rel-
atively independent of B(6y— &), the elements of the CRLB
become: dominated by oscillations, as can be predicted from (28).
The exact shapes of these oscillations, as well as the locations of
their relative: extremum, depend on the values of SNR, and B@j.
The local maxima of the oscillations in. the diagonal elements of the

INR,, = +o0
INR,, = 10dB

B(8g— &)

Fig. 3. Elements of CRLB =J(8)"" as a function of B(@y— 5o} for
B6; =1, SNR, = 0dB and INR, = -10dB, 0dB, 3dB, 10dB and +o0.

CRLB generally correspond to: major increases in estimator vari--
ance for 6, and 8;. Moreover, the oscillations occurring in the off-
diagonal elements of the CRLB can now introduce a large degree
of correlation between the estimation errors of 6y and 8. This con-
stitutes an: important obscrvation since in applications of differen-
tial Doppler shift estimation: to. source: localization problems, it is
generally assumed that these estimation: errors are uncorrelated.
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