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ABSTRACT

The major drawback of most noise reduction methods
is what is known as musical noise, To cope with this
problem, the masking properties of the human ear were
used in the spectral subtraction methods. However,
no similar approach is available for the signal subspace
based methods. In a previous work, we presented a fre-
quency to eigendomain transformation which provides
a way to calculate a perceptually based upper bound for
the residual noise. This bound, when used in the sig-
nal subspace approach, yields an improved result where
better shaping of the residual noise is achieved. In this
paper, we further improve this method and provide an
easy way to generalize it to the colored noise case. Lis-
tening tests results are given to show the superiority of
the proposed method.

1. INTRODUCTION

Most noise reduction methods for speech enhancement
suffer from an annoying residual noise known as musical
noise. To reduce the effect of this drawback, the use of
a human hearing model which was first introduced in
audio coding [1], has been proposed (e.g {2], [3]}. This
model is based on the fact that the human auditory
system is able to tolerate additive noise as long as it
is below some masking threshold. Methods to calculate
this threshold are developed in the frequency domain
according to critical band analysis and the excitation
pattern of the basilar membrane in the inner ear [4].
These masking properties are not used in the signal
subspace (SS) approach for noise reduction [5] because
it does not operate in the frequency domain as is the
case with the spectral subtraction methods.

In [6] we presented a frequency to eigendomain trans-
formation (FET) which provides a way to calculate a
perceptually based upper bound for the residual noise.
This bound, when used in the signal subspace approach,
yields better residual noise shaping from a perceptual
perspective. In this paper; we further develop this
method using a more sophisticated masking medel and
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a modified gain function. We also provide a general-
ization of the algorithm to the colored noise case.

Subjective listening tests were carried cut and the
results show that the proposed new method outper-
formed other existing methods. The results also show
that our method provided better noise shaping which
is almost the same no matter what the original back-
ground noise is.

The paper is organized as follows. In section 2 we
briefly describe the eigenfilter used in the enhancement
method. The frequency to eigendomain transforma-
tion is described in section 3. The masking model is
presented in section 4 and the details of the proposed
method are given in section 5. Finally listening tests
results are described in section 6 and a conclusion is
given in section 7.

2. THE SIGNAL SUBSPACE APPROACH

Let x = s 4+ w be a P-dimensional noisy observation
vector where s is the desired vector and w is the noise
vector with covariance matrix R.,,.

The eigenvalue decomposition of the covariance ma-
trix R of the clean vector is given by R, = UA,U#
where A, = diag(As,,...,Asp) with the eigenvalues
Ay 's in decreasing order. We first assume the noise
to be white with Ry, = %I so that R, the covari-
ance matrix of x, will have the same eigenvectors as
R,. We also assume that rank(R,} = K < P so that
Agy =0fork=K+1,...,P. Hence U can be written
as U = [U;U;] where U; spans the so-called signal
subspace and Us spans the noise subspace.

We want to find a linear estimate of s given by
§ = Hx = Hs + Hw. The residual error signal is given
by

r=8—s={(H-Is+Hw=r,+r, (1)

In the spectral domain constrained approach (SDC),
the enhancement filter H is obtained by minimizing
the signal distortion

min  tr(E{r,r;'}) (2)
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subject to

E{lufry’} S axo® k=1...K (3)

which ensures that the k" spectral component of the
residual noise is below some threshold. Here uy, is the
kt* eigenvector of R, with eigenvalue A,,. The solution
to this problem is given by [5]

H = U;QU¥ (4
where Q is a K x K diagonal gain matrix with entries
qk=ai/2=e_""2/)‘°k k=1,...,K. {(5)

The major drawback of the above approach is that
it requires the noise to be white. In [5], prewhitening
is described as a remedy to this problem. Accordingly,
the eigenfilter is modified as follows

H=RIHRS? 6)

where Ré is the square root of the colored noise covari-
ance matrix. We shall refer to this modified method
as the signal subspace (8S) method with Prewhitening
(SSwP).

3. THE FREQUENCY TO EIGENDOMAIN
TRANSFORMATION

The filter described in the previous section provides
some residual noise shaping but this shaping is not
based on the masking properties of the human ear.
To be able to include these properties in the eigenfil-
ter design, a frequency to eigendomain transformation
(FET) is required which relates the power spectrum
density (PSD) of a random signal to the eigenvalues of
its covariance matrix.

Let R = toeplitz(r{0),...,r(P — 1)) be the co-
variance matrix of a zero mean random process z(n)
with autocorrelation function r(p) = E{z(n)z*(n+p)}.
Let A; and u; = [u,;((}),...,u,r(P - 1)]T be the **
eigenvalue and unit norm eigenvector of R respectively.
A well known relationship between A; and the PSD
(w) = 3277 _ o T(P)e™P of z(n) is as follows [7]:

1

A==

2 ) P(WVi(w)|®dw fori=1...P (7)

-

where Vi(w} = E;:Dl ui(p)e 9P is the discrete-time
Fourier transform of u;(p).

In practice only an estimate of the PSD is available.
Of interest in the context of this paper is the Blackman-
Tukey estimate which is the DTFT of a windowed ver-
sion of the autocorrelation function 7{p}, namely

P-1

Porw)= Y. rme ™ (8)

p=-P+1

If wy(p) is a Bartlett (triangular) window defined as
wp(p) =1— lj%l for |p| < P, then the Blackman-Tukey
estimate can be written in terms of the eigenvalue de-
composition of R as follows [7]

R C S
$pr(w) = PZ)\JV;(UN (9)

Equation (9) can be viewed as a kind of "inverse” of
equation (7). A detailed derivation of these two rela-
tionships can be found in [6]. The FET is to be used
in the new proposed method for speech enhancement
described in section 5.

4. CALCULATING THE MASKING
THRESHOLD

Unlike in [6] where we used the masking model given in
{1], a more sophisticated model is used in this paper.
This mode! is similar to that used in IS0 MPEG-1
audio coding standard [8] with some modifications. In
this Section we briefly describe the steps required to
calculate the masking threshold.

The resolution of the human auditory system is
based on critical band analysis which follows a non-
linear Bark scale. One Bark is related to the frequency
in Hertz as follows {4]

2(f) = 13 arctan(0.00076 f) + 35 arctan[(ﬁfo—o)zl (10)

Inter-band masking is accounted for by convolution
with a spreading function. This function has lower and
upper skirts of +25 dB and -10 dB per critical band
respectively and is given by [9]

SE(z) = 15.81+7.5(240.474) — 17.5+/1 + {z + 0.474)2
(11)
The masking threshold is obtained by subtracting a
relative threshold offset depending on the masker type,
tone-like or noise-like. The tonality is measured as in
(1] using the spectral flatness measure {SFM). Finally
the so obtained threshold is compared with the abso-
lute threshold of hearing and the maximum of the two
is retained. The global masking threshold is calculated
by linear adding these individual thresholds [8].Figure
1 illustrates the power spectrum density of a voiced
speech frame together with the masking threshold cal-
culated using the above procedure.

5. THE PROPOSED ALGORITHM

During non-speech activity periods, the noise autocor-
relation function #,(p) is estimated. This estimate is
both used to calculate the power spectrum ®,, (w) using
the Blackman-Tukey estimator and to form the toeplitz
covariance matrix R, of the noise.
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Figure 1: PSD of a voiced speech frame (continuous)
and its corresponding masking threshold (dashed)

Let ﬁr dencte the covariance matrix estimate of
x. Since the noise and the speech signal are assumed
to be uncorrelated, the clean speech signal covariance
matrix is estimated as Rs = R R This estimate
is not guaranteed to be positive definite so the rank K
of R, is chosen to be the number of strictly positive
eigenvalues of R,[10].

Define the vector A, = [isl 5\_,2 X.;K]T where
:\sk is the k" eigenvalue of fl_,. Consider also the Jx K
matrix V = [vi,..., vk} where vi is the magnitude
squared of the J-point DFT of 10, the k" eigenvector
of R,.

Having defined all the necessary quantities, equa-
tion (9) is implemented to calculate the PSD as follows

a 1 ~
&= VX, (12)

& is used to calculate a masking threshold $4 as de-
scribed in Section 4. A new set of eigenvalues is then
recovered using equation (7) as follows
1
Ag=[Aa-- o ha]l = 3VHq>9 (13)

The masking properties of the human ear are now em-
bedded in these eigenvalues.

Next, to handle the col()red noise case, we calculate
the vector Ay = [Auy, ..+, Awy]T in a similar way

Ao = %Vﬂéw (14)

The elements of A, will substitute o2 in equation (5)
to allow the SS method to be generalized to the colored
noise case. Actually in terms of R, and its eigenvec-
tors, we have )\wk = uy HR 0, which is the same quan-
tity used in [10] and was reported to have better noise
shaping than the SSwP [5].

Now with these tools we can describe two methods
for noise reduction which just differ in the gain function
of equation (5). In the first method, which we call the
modified SS method (MSS), the gain function is given
by o

gp = e~ VAl dey (15)

This method gives similar results as in [10] and is in-
troduced to evaluate the merit of using masking.
In the second method the gain is defined as follows

gk = e~ Phu/ min(a Ao, (16)

The minimum is used to obtain a smoother transition of
the residual noise from silence periods to speech activ-
ity periods and consequently achieving better results.
This method is called the perceptual SS method (PSS).

6. RESULTS

In the subset of experiments reported here, a 2.2 sec fe-
male spoken speech signal sampled at 8 KHz was used.
The algorithm was implemented as described above, us-
ing the following parameters: P =32, J =256, v =3
for S8wP and MSS, and v = 1 for PSS. A demo of these
experiments is available in our web site mentioned in
the title.

To evaluate the performance of the proposed algo-
rithm, a subjective test was carried out. The original
clean speech signal was corrupted with 4 different types
of colored noise: a freezer motor, a military vehicle, a
Volvo car and an F-16 cockpit noise. The SNR was dif-
ferent for every noise type in order to have conditions
close to those of the real world. The different average
and segmental SNR’s are shown in Table 1.

A group of 14 people were asked to evaluate the
performance of the new PSS method and to compare it
with the original noisy signal, the SSwP and the MSS.
The subjects ages were in the range of 22 to 35 years
and none of them worked in the speech processing field.
12 pairs of recordings were presented to the subjects:
for each pair, they were asked to vote for the signal
they preferred. A neutral answer was also allowed if
they could not perceive any difference.

Table 1 shows the results of this test. It can be
seen that the PSS outperformed the other two enhanc-
ing methods especially with the military vehicle noise
were all the subjects voted for the PSS. We note that in
the F-16 cockpit noise case 40% of the subjects voted
for the noisy signal because they preferred the exist-
ing noise to the obtained signal distortion. However,
these subjects said that if the 2.2 sec test signal had
been longer they would have changed their preference
because the noise would be more disturbing and they
would be less able to tolerate it.

To evaluate the noise shaping capabilities of the
three speech enhancement methods, a second test was
performed. The four signals, corresponding to the four
noise types, were enhanced using the PSS method. The
resulting enhanced signals were then presented to the
subjects. No signal was taken as a reference. The sub-
jects were asked to compare the characteristics of the
four residual noises. The comparison is based on how
similar or different these characteristics are in the four
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Noise Type SNR (dB) | Compared with | Compared with | Compared with
Ave/seg noisy signal SSwP MSS

Freezer motor 5/-4 100% 90% 80%

Military vehicle 5/-4 100% 100% 100%

Volvo car 0/-10 80% 85% 60%

F-16 cockpit 10/-0.4 60% 70% 60%

Table 1: Subjective test results: colored noise case with four different noise types. Shown are the percentage of
times where PSS was preferred, compared to noisy signal, SSwP and MS5.

signals. The subjects had to score their decision on a
"5 level scale. The following choices were allowed:

0 : Completely different
1 : Different

2 : Don’t know

3 : Almost similar

4 : Similar

The same test was then repeated with the other two
methods, i.e. SSwP and MSS.

Figure 2 shows the results of this test. For the SSwP
and MSS, the average score of 1 and 1.2, respectively,
indicates that the subjects found the residual noise dif-
ferent in every case. The average score of 3.5 for PSS
shows that the new method provided a residual noise
shaping which is almost similar for all background noise
types. Hence we conclude that the PSS has a relatively
constant performance under different noise conditions.

1B

SEwf MSS PSS

Figure 2: Neise shaping scores for the three different
speech enhancement methods.

7. CONCLUSION

In this paper we presented a perceptual spectral do-
main constrained signal subspace approach for noise
reduction. The proposed methed uses the masking
properties of the human ear within the eigenfilter de-
sign. This method is also capable to enhance signals
corrupted with colored noise. Listening tests show that
our method outperforms other existing signal subspace
methods and, unlike these methods, the residual noise
characteristics of the proposed PSS are almost similar
no matter what the noise type is.
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