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ABSTRACT

Recently, an early auditory model [1] that calculates a so-called au-
ditory spectrum, has been employed in audio classification where
excellent performance is reported along with robustness in noisy en-
vironment. Unfortunately, this early auditory model is character-
ized by high computational requirements and the use of nonlinear
processing. In this paper, inspired by the inherent self-normalization
property of the early auditory model, we propose a simplified FFT-
based spectrum which is noise-robust in audio classification. To
evaluate the comparative performance of the proposed FFT-based
spectrum, a three-class (i.e., speech, music and noise) audio classi-
fication task is carried out wherein a support vector machine (SVM)
is employed as the classifier. Compared to a conventional FFT-based
spectrum, both the original auditory spectrum and the proposed self-
normalized FFT-based spectrum show more robust performance in
noisy test cases. Test results also indicate that the performance of
the self-normalized FFT-based spectrum is close to that of the origi-
nal auditory spectrum, while its computational complexity is signif-
icantly lower.

1. INTRODUCTION

Audio classification and segmentation can provide useful informa-
tion for both audio and video content understanding. In recent years
many studies have been carried out on audio classification algo-
rithms. Saunders [2] proposed a technique, which is based on a
measure of energy contour and the distribution of zero-crossing rate
(ZCR), to discriminate speech from music on broadcast FM radio.
By using audio features such as energy function, ZCR, fundamental
frequency, and spectral peak tracks, Zhang and Kuo [3] proposed an
approach to automatic segmentation and classification of audiovisual
data. Lu et al. [4] proposed a two-stage robust approach that is capa-
ble of classifying and segmenting an audio stream into speech, mu-
sic, environment sound, and silence. In a recent work, Panagiotakis
and Tziritas [5] proposed a fast and effective algorithm for audio
segmentation and classification using mean signal amplitude distri-
bution and ZCR.

Although in some previous research the background noise has
been considered as one of the audio types in a classification task,
the effect of background noise on the performance of classification
has not been investigated widely. A classification algorithm trained
using clean sequences may fail to work properly when the actual
testing sequences contain background noise with certain SNR lev-
els (see test results in [6] and [7]). The so-called auditory spectrum,
which is calculated from an early auditory model [1], was proved to
be robust in noisy environment due to an inherent self-normalization
property which causes spectral enhancement. Recently, this early au-
ditory model has been employed in audio classification and excellent

performance has been reported [6] [7]. However, this model is not
well-suited for some practical applications due to its high computa-
tional requirements and the use of nonlinear processing. Therefore,
it would be desirable that this early auditory model be simplified, or
even approximated in the frequency domain wherein efficient FFT
algorithms are available.

In this paper, inspired by the inherent self-normalization prop-
erty of the early auditory model [1], we propose a simplified model
to calculate a novel self-normalized FFT-based spectrum. To eval-
uate the comparative performance of the proposed self-normalized
FFT-based spectrum, a speech/music/noise classification task is car-
ried out wherein a support vector machine (SVM) is used as the clas-
sifier. Compared to a conventional FFT-based spectrum, both the au-
ditory spectrum and the self-normalized FFT-based spectrum show
more robust performance in noisy test cases. Experimental results
also show that the performance of the self-normalized FFT-based
spectrum is close to that of the original auditory spectrum, while its
computational complexity is reduced by an order of magnitude.

The paper is organized as follows. Section 2 briefly introduces
the self-normalization scheme inherent in the early auditory model
[1]. Inspired by this self-normalization property, a new model is pro-
posed in Section 3 to calculate a noise-robust FFT-based spectrum.
Section 4 explains the extraction of audio features and the setup of
the classification tests. The test results are presented in Section 5.

2. SELF-NORMALIZATION INHERENT IN AN EARLY
AUDITORY MODEL

2.1. Background on the Early Auditory Model

The auditory spectrum used in this work is calculated from an early
auditory model introduced in [1] and [8]. This model, which can
be simplified as three-stage process shown in Fig. 1, describes the
transformation of an acoustic signal into an internal neural represen-
tation referred to as auditory spectrogram. A signal entering the ear
produces a complex spatio-temporal pattern of vibrations along the
basilar membrane (BM). A simple way to describe the response char-
acteristics of the BM is to model it as a bank of constant-Q highly
asymmetric bandpass filters h(t, s), where t is the time index and
s denotes a specific location on the BM (or equivalently, s is the
frequency index). At the next stage, the motion on the BM is trans-
formed into neural spikes in the auditory nerve and the biophysical
process is modeled by the following three steps: a temporal deriva-
tive, a nonlinear sigmoid-like compressive function g(·), and a low-
pass filter w(t). At the last stage, a lateral inhibitory network (LIN)
detects discontinuities in the responses across the tonotopic axis of
the auditory nerve array. The operations can be effectively divided
into the following steps: a derivative with respect to the tonotopic
axis s, a local smoothing v(s), a half-wave rectifying (HWR), and a
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Fig. 1. Schematic description of the early auditory model [1].

temporal integration. These operations effectively compute a spec-
trogram of an acoustic signal. At a specific time index t, the output
y5(t, s) is referred to as an auditory spectrum. For simplicity, the
spatial smoothing v(s) is ignored in the implementation [1].

2.2. The Inherent Self-Normalization Scheme

This early auditory model is proved to be noise-robust due to an
inherent self-normalization property [1]. According to the stochastic
analysis carried out in [1], the following relationships hold

E[y5(t, s)] = E[y4(t, s)] ∗t Π(t)
E[y4(t, s)] = E[g′(U)E[max(V, 0)|U ]]
V = (∂tx(t)) ∗t ∂sh(t, s)
U = (∂tx(t)) ∗t h(t, s)

(1)

where E denotes statistical expectation, E[y5(t, s)] is the output au-
ditory spectrum, Π(t) is a temporal integration function, and ∗t de-
notes time-domain convolution. According to [1], E[y4(t, s)] is a
quantity that is proportional to the energy of V , and inversely pro-
portional to the energy of U . The definitions of U and V given in (1)
further suggest that the auditory spectrum is an averaged ratio of the
signal energy passing through the differential filters ∂sh(t, s) and
the cochlear filters h(t, s), or equivalently, the auditory spectrum is
a self-normalized spectral profile [1]. Considering that the cochlear
filters are broad while the differential filters are narrow and centered
around the same frequencies, this self-normalization property leads
to the fact that the spectral components of the sound signal receive
unproportional scaling. Specifically, a spectral peak receives a rela-
tively small normalization factor whereas a spectral valley receives
a relatively large normalization factor. The difference in the normal-
ization is known as spectral enhancement or noise suppression.

3. A NEW SELF-NORMALIZED FFT-BASED MODEL

Due to a complex computation procedure and the use of nonlinear
processing in the above early auditory model, the computational
complexity of the auditory spectrum is expected to be higher than
that of a conventional FFT-based spectrum. Therefore, it is desirable
to approximate this model in the frequency domain wherein efficient
FFT algorithms are available. In this work, by integrating the self-
normalization property of the above early auditory model, we pro-
pose a new frequency-domain model to calculate a self-normalized
FFT-based spectrum. The details of this model, illustrated in Fig. 2,
are presented below.

3.1. Normalization of the Input Signal

To make the algorithm adaptable to input signals with different en-
ergy levels, each input audio clip is normalized with respect to the
square-root value of its average energy.
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Fig. 2. Schematic description of the proposed FFT-based model.

3.2. Power Spectrum Grouping

Using the normalized audio signal, narrow-band (30 ms) spectra are
calculated using a 512-point FFT with an overlap of 20 ms. To re-
duce the dimension of the obtained power spectrum vector, we may
use methods like principal component analysis (PCA). In this work,
to simplify the processing, we propose a simple grouping scheme to
reduce the dimension. The grouping is carried out according to the
following formula

Y (i) =

�������
������

X(i) 1 ≤ i ≤ 80

1

2

1�
k=0

X (2i − 80 − k) 81 ≤ i ≤ 120

1

8

7�
k=0

X (8i − 800 − k) 121 ≤ i ≤ 132

(2)

where i is the frequency index, and X(i) and Y (i) represent the
power spectrum before and after grouping, respectively. From for-
mula (2), this grouping scheme gives emphasis to low-frequency
components. Based on this grouping scheme, a set of 256 power
spectrum components is transformed into a 132-dimensional vector.

3.3. Spectral Self-Normalization

To apply self-normalization of the aforementioned early auditory
model on the above 132-dimensional power spectrum vector, we first
define a narrow filter Wn(i) and a broad filter Wb(i) as

Wn(i) =

1�
k=−1

akδ(i − k)

Wb(i) =
2�

k=−2

bkδ(i − k)

(3)

where ak’s and bk’s are coefficients, and i is the frequency index.
Let Yn(i) and Yb(i) represent the outputs from filters Wn(i) and
Wb(i) respectively, i.e.,

Yn(i) = Y (i) ∗ Wn(i)

Yb(i) = Y (i) ∗ Wb(i)
(4)

where ∗ denotes convolution. Based on Yn(i) and Yb(i), a self-
normalization coefficient at frequency index i, SNC(i), is defined
as

SNC(i) =
Yn(i)

Yb(i)
i = 1, 2, · · · , 132 (5)

Finally, the self-normalized spectrum at frequency index i is
obtained by multiplying the power spectrum at that frequency in-
dex, i.e., Y (i), with the corresponding self-normalization coefficient
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SNC(i), and applying a square-root operation. After discarding the
first and the last two components, we obtain a 128-dimensional self-
normalized spectrum vector.

4. FEATURE EXTRACTION AND CLASSIFICATION TEST

4.1. Audio Sample Database

To carry out performance tests, a generic audio database is built
which includes speech, music and noise clips. Music clips include
five different types, i.e., blues, classical, country, jazz, and rock.
Eleven types of noise, which include speech babble, car interior
noise, copy center noise, etc., are employed to form the noise set.
The training set and testing set each contain 3600 one-second audio
clips including 1200 speech, 1200 music and 1200 noise clips. The
sampling rate is 16 kHz.

In the following, a clean test refers to a test wherein both the
training set and testing set contain clean speech, clean music and
noise. A test with a specific SNR value refers to a test wherein
the training set contains clean speech, clean music and noise while
the testing set contains noisy speech (with that specific SNR value),
noisy music (with that specific SNR value) and noise.

4.2. Audio Features

In this work, audio features are extracted based on the aforemen-
tioned auditory spectrum and FFT-based spectrum. Using auditory
spectrum data, mean and variance are further calculated in each chan-
nel over a one-second time window. Corresponding to each one-
second audio clip, the auditory feature set is a 256-dimensional mean
+variance vector.

Besides the proposed self-normalized FFT-based spectrum, the
conventional FFT-based spectrum is also calculated. It is actually
the logarithmic value of Y (i) 1 without the input normalization (see
Fig. 2). Based on the conventional and the proposed self-normalized
FFT-based spectra, mean and variance are calculated similarly on
different frequency indices over a one-second time window.

4.3. Implementation

In this work, we use a Matlab toolbox developed by Neural Sys-
tems Laboratory, University of Maryland [9], to calculate the audi-
tory spectrum. Relevant modifications are introduced to this toolbox
in order to meet the needs from our simulation tests.

The support vector machine (SVM) was recently employed in
audio classification task [6] [10]. In this work, we use the SVMstruct

algorithm [11]– [13] to carry out the classification task.

5. PERFORMANCE ANALYSIS

5.1. Classification Test Results

The test results (i.e., the error classification rate) are listed in Table
1, wherein “AUD”, “FFT”, and “FFT SN” represent the original au-
ditory spectrum [1], the conventional FFT-based spectrum, and the
proposed self-normalized FFT-based spectrum respectively.

Although the conventional FFT-based spectrum provides an ex-
cellent performance in the clean case, its performance degrades rapidly
as the SNR decreases, leading to a very poor overall performance.

1The first and the last two components are discarded in order to keep the
dimension as 128.

Compared to the conventional FFT-based spectrum, the original au-
ditory spectrum and the proposed self-normalized FFT-based spec-
trum are more robust in noisy test cases. Results in Table 1 also
indicate that the performance of the proposed self-normalized FFT-
based spectrum is close to that of the original auditory spectrum.

Table 1. Error rate (%): the auditory spectrum, the conventional
FFT-based spectrum, and the self-normalized FFT-based spectrum.

SNR(dB) ∞ 20 15 10 5 Average
AUD 3.06 3.42 3.78 5.92 12.19 5.67
FFT 2.42 22.97 37.39 47.64 55.50 33.18

FFT SN 2.94 3.22 4.14 6.56 13.78 6.13

Two examples of audio features are shown in Figs. 3 and 4.
Fig. 3 shows the FFT-based spectrum features (mean and variance)
for a one-second speech clip in clean test case and in noisy test case
with 10 dB SNR. At SNR=10 dB, the proposed self-normalized FFT-
based spectrum features are close to those in the clean test case.
However, this is not the case for the conventional FFT-based spec-
trum features wherein the change is large. A similar situation can
be found in Fig. 4, which shows test results for a one-second music
clip. The small difference shown in Figs. 3 and 4 indicates that a
property of spectral enhancement or noise suppression, which is in-
herent in the original early auditory model, is now included in our
proposed self-normalized FFT-based model.

5.2. Computational Complexity

The potential of the proposed self-normalized FFT-based model lies
in its low computational complexity. A rough estimation of the com-
putational load is carried out by counting the number of the required
multiplications per unit time.

For a one-second audio clip with 16 kHz sampling frequency,
based on the implementation [9], the original early auditory model
requires more than 3×107 multiplications in bandpass filtering. We
ignore all other calculations for early auditory model.

For the proposed self-normalized FFT-based model, with a safety
margin, we first estimate the ratio of the average machine cycle used
for a division to that of a multiplication as 10:1. The correspond-
ing ratio for square-root operation is estimated as 20:1. With these
results, for a one-second audio clip, the number of multiplications
consumed for the proposed self-normalized FFT-based spectrum is
about 1.5 × 106, which is less than 1/20 of the multiplications used
for the calculation of the original auditory spectrum.

6. CONCLUSIONS

In this paper, inspired by the inherent self-normalization property of
an early auditory model introduced in [1], we have proposed a new
model to calculate a noise-robust FFT-based spectrum. To evaluate
the performance of the original auditory spectrum and the proposed
FFT-based spectrum, a three-class (i.e., speech, music and noise) au-
dio classification task has been carried out wherein a support vector
machine is used as the classifier. Compared to a conventional FFT-
based spectrum, the original auditory spectrum and the proposed
self-normalized FFT-based spectrum show more robust performance
in noisy test cases. Test results also indicate that the performance of
the proposed self-normalized FFT-based spectrum is close to that of
the original auditory spectrum, while its computational complexity
is significantly lower.
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(a) Conventional FFT spectrum features
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(b) Self-normalized FFT spectrum features

Fig. 3. FFT-based spectrum features for one-second speech clip.
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