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ABSTRACT

We derive a block linear MMSE equalizer suitable for zero padded

multicarrier systems with insufficient guard length. The proposed

equalizer is not limited to systems using the IFFT/FFT pair (like in

DMT or OFDM), but to any multicarrier system that can be modelled

as a pair of perfect reconstruction filter banks. As the computational

complexity of the equalizer can be high, an efficient implementa-

tion based on the Cholesky factorization is developed. Compared

to the traditional zero-forcing approach, experiments show that in

the presence of interblock interference (IBI), the proposed equalizer

performs significantly better, regardless of the signal-to-noise ratio

(SNR). In the absence of IBI (i.e. when the guard interval is suffi-

ciently long), improvements have also been observed at low SNR.

1. INTRODUCTION

In recent years, multicarrier systems have been successfully used

in consumer products such as ADSL (asymmetric digital subscriber

line) modems and wireless broadband routers. Multicarrier mod-

ulation subdivides the channel bandwidth into several narrow band

subcarriers; portions of the input bit stream are then allocated to each

subcarrier and transmitted independently. The equalization scheme

used in these systems usually relies on guard intervals, either in the

form of zero padding or a cyclic prefix. To operate properly, the du-

ration of the guard interval must be longer than the channel impulse

response. This may pose problems in applications where the channel

impulse response is long because a notable fraction of the available

bandwidth will have to be reserved for equalization purposes. For in-

stance, this problem arises with the deployment of DSL services in

rural areas, as the copper telephone loops can be much longer than

those in urban agglomerations.

There is thus a need to develop an equalization scheme that does

not necessarily impose a minimum guard length. This problem has

been investigated in [1] from a zero-forcing point of view, i.e. where

the received symbols are forced to be equal to transmitted symbols,

regardless of noise. Yet the equalizer proposed in [1] is not a “true”

zero-forcing equalizer due to certain approximations proposed by the

authors. In this work, we consider the minimum mean square error

(MMSE) approach, where the goal is to minimize the error power

between the received and transmitted symbols. Such an approach has

been studied extensively in [2], but only for systems having guard

intervals of sufficient length.

We derive a MMSE equalizer suitable for zero padded multi-

carrier systems with insufficient guard length. The channel impulse

response is assumed to be known. The proposed equalizer is not lim-

ited to systems using the IFFT/FFT pair (like in DMT or OFDM),

but to any multicarrier system that can be modelled as a pair of per-

fect reconstruction filter banks. As the computational complexity of

the equalizer can be high, an efficient implementation based on the

Cholesky factorization is discussed. Compared to the zero-forcing

approach, simulations indicate that the proposed solution can im-

prove the achievable bit rates significantly, especially when the guard

length is insufficient.

We use the following notation. Matrices 0M×N and IM denote

theM×N zero matrix and theM×M identity matrix, respectively.
We use A[i, j] to refer to the (i, j) entry of matrix A, while A[i, :]
and A[:, j] respectively denote the i-th row and the j-th column of
A.

2. ZERO PADDED MULTICARRIER SYSTEMS

The multicarrier transceiver system considered in this paper is illus-

trated in Fig. 1. The block ofM transmitted symbols are represented
by the vector x[n],

x[n] �
`
x0[n] x1[n] . . . xM−1[n]

´T
,

whose elements are symbols typically chosen from a QAM constel-

lation according to some bit loading rule. Modulation is performed

via the K × M , K ≥ M , polynomial matrix G(z), representing a
filter bank. A block of J zeros is then appended to the modulated
time-domain samples to combat interblock interference (IBI), as de-

tailed later. This zero padded sequence is sent through a channel

modelled by a finite impulse response (FIR) filterC(z) of degreeQ,
i.e.

C(z) =

QX
n=0

c[n]z−n
.

An additive noise η[m] is also present in the channel output. At the
receiver end, equalization is carried out via a block linear equalizer

represented by the K × N matrix E, where N � K + J . Finally,
theM×K filter bank S(z) demodulates the equalized data, yielding
the received block

x̂[n] �
`
x̂0[n] x̂1[n] . . . x̂M−1[n]

´T
.

To ease mathematical treatment, we also define theN×N poly-
nomial channel matrix

C(z) =

Q′X
n=0

Cnz
−n

which results from cascading the decimators, delay elements, C(z),
expanders and advance elements (see Fig. 1). C(z) can be obtained
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Fig. 1. A zero padded filter bank transceiver.

by using the so-called polyphase identity [3]. In addition, we use

K × 1 vectors u[n] and v[n] to denote the modulator output and the
demodulator input, respectively. Hence, we can write

v[n] = E

0
@ Q′X

k=0

Ck

„
u[n − k]
0J×1

«
+ η[n]

1
A , (1)

where

η[n] �
`
η[Nn] η[Nn + 1] . . . η[Nn + N − 1]

´T
.

Throughout this paper, the following assumptions are made:

1. The filter banksG(z) andS(z) are already designed such that
S(z)G(z) = z−d

IM (where d is some delay, assumed to be
zero without loss of generality), i.e. they are characterized by

the perfect reconstruction property.

2. We have Q < N , N = K + J .

3. The channel C(z) is known.

The first assumption allows us to re-use one of the several avail-

able methods of designing perfect reconstruction filter banks [3]. As

an example, DFT filter banks could be employed [4] or one could

simply use the DFT matrix as in OFDM / DMT [5]. Although this

approach is suboptimal from a MMSE point of view, where the goal

is to minimize the average power of x̂[n] − x[n], it simplifies the
design problem greatly since the filter banks and the equalizer can

be considered as two independent design problems. Nevertheless, as

shown in Sec. 5, the proposed suboptimal approach improves perfor-

mance considerably compared to the traditional design.

The second assumption guarantees that the channel matrixC(z)
can be decomposed as follows [2]

C(z) = C0 + C1z
−1

, (2)

whereC0 is a lower triangular Toeplitz matrix whose first column is

given by

C0[:, 1] =
`
c[0] . . . c[Q] 0 . . . 0

´T

andC1 is an upper triangular Toeplitz matrix whose first row is given

by

C1[1, :] =
`
0 . . . 0 c[Q] . . . c[1]

´
.

Note that the condition on Q (i.e. Q < N ) is far less restrictive
than what is usually permitted (e.g. see [2]). As shown below, zero-

forcing equalizers require that Q ≤ J to ensure complete intersym-
bol interference (ISI) cancellation.

One of the most common approach to equalizer design would

be the well-known zero-forcing solution. Such equalizer, denoted

here by EZF, ignores the presence of noise completely (i.e. η[n] =
0N×1) and enforces v[n] = u[n]. Hence, from (1) and (2), we have

v[n] = EZF

„
C0

„
u[n]
0J×1

«
+ C1

„
u[n − 1]
0J×1

««
. (3)

Note that C1 is responsible for IBI since it allows the previously

transmitted block, u[n − 1], to be combined with u[n] to yield the
current received block. Now, if we partitionCn (n = 0, 1) as

Cn =
`
Cn,0 Cn,1

´
, (4)

whereCn,0 is a N × K matrix, then (3) becomes

v[n] = EZF (C0,0u[n] + C1,0u[n − 1])

= EZFC0,0u[n] if Q ≤ J.
(5)

In this case, a zero-forcing solution can be found by using the pseudo-

inverse (denoted by the superscript †), i.e.

EZF = C
†
0,0. (6)

Such solution can be obtained by the QR factorization since C0,0 is

full rank (due to its Toeplitz nature). However, when the guard length

is insufficient, i.e. if Q > J in (5), a true zero-forcing equalizer
cannot be found due to the presence of IBI.
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3. MMSEWITH INSUFFICIENT GUARD LENGTH

There are two main reasons to consider a MMSE solution to the

equalization problem instead of the zero-forcing approach. The first

reason is to allow the guard length J to be less than the channel
degreeQ. As mentioned in Sec. 2, no zero-forcing solution exists in
this case. The second reason is to be able to compensate for noise.

Indeed, to ensure reliable digital transmissions, we expect v[n] to be
as close as possible to u[n]. In a zero-forcing approach, noise could
be amplified so much that the aforementioned does not hold.

If noise is no longer ignored, we can write, from (1) and (2),

v[n] = E (C0,0u[n] + C1,0u[n − 1] + η[n]) , (7)

where C0,0 and C1,0 are the matrix partitions defined in (4). The

goal of the MMSE approach is to find a linear transformation E =
EMMSE such that the average power of e[n], given by

e[n] = v[n] − u[n], (8)

is minimized. This minimization problem can be solved using partial

derivatives as follows

∂ E
`
tr

`
e[n]eT [n]

´´
∂ EMMSE

= 0, (9)

where E and tr respectively denote the expectation and trace (i.e. the
sum of the diagonal elements) operators.

Using the matrix differentiation rules in [6], if we substitute (7)

and (8) into (9), we can solve for EMMSE and obtain

EMMSE = RuC
T
0,0

`
C0,0RuC

T
0,0 + C1,0RuC

T
1,0 + Rη

´−1

, (10)

where

Ru � Eu[n]uT [n]

and

Rη � Eη[n]ηT [n].

The MMSE equalizer found in (10) is similar in form to the one de-

rived in [2], except that imperfect IBI mitigation (due to insufficient

guard length) is now taken into account via the termC1,0RuC
T
1,0.

4. FAST IMPLEMENTATION OF THE MMSE EQUALIZER

The proposed MMSE equalizer given by (10) can be costly (in terms

of computational power) to implement, especially in wireless envi-

ronments where the channel impulse response is time varying. One

effective technique to reduce the computational complexity is to make

use of the diagonalization property of circulant matrices [5]. How-

ever, such technique requires “extending” the Toeplitz matrix C0,0

into a circulant structure and can only be applied in situations where

the guard length is sufficiently long (i.e. J ≥ Q). Moreover, it
is necessary to assume that the additive noise is white. A different

technique must be considered for systems contaminated by coloured

noise or with insufficient guard length (i.e. J < Q). For these sys-
tems, we derive an efficient implementation based on the Cholesky

factorization by exploiting the structure of Cn,0 (n = 0, 1) and the
fact thatRη is symmetric and positive definite.

We will assume that the modulator generates uncorrelated sam-

ples, i.e. Ru = σ2

uIK . The MMSE equalizer thus becomes

EMMSE = σ
2

uC
T
0,0D

−1
,

where

D = σ
2

u

“
C0,0C

T
0,0 + C1,0C

T
1,0

”
+ Rη. (11)

We can show that, due to the nature of the matrices involved in (11),

D is symmetric and positive definite. As such, the Cholesky factor-

ization can be employed to “invert” D [7]. A complete procedure

which computes v[n], the output of the proposed linear block equal-
izer, i.e.

v[n] = EMMSEw[n],

is given by Algorithm 1. Vector w[n] represents the input of the
block equalizer (see Fig. 1) and is defined as

w[n] = C0,0u[n] + C1,0u[n − 1] + η[n].

The amount of flops (floating point operations) for each step of the
algorithm is also given.

Algorithm 1 Compute v[n] = EMMSEw[n].

1: FormD = σ2

u(C0,0C
T
0,0 + C1,0C

T
1,0) + Rη

{ 11

2
N2 − 2NK + K2 flops}

2: Compute the Cholesky factorization ofD, i.e. D = U
T
U

{ 1

3
N3 flops}

3: Solvew[n] = Dx[n] = U
T
Ux[n] using back substitutions

{2N2 flops}
4: Evaluate v[n] = EMMSEw[n] = σ2

uC
T
0,0x[n]

{2NK flops (without exploiting structure)}

Notice that the product C0,0C
T
0,0 in (11) involves highly struc-

tured matrices (being both Toeplitz and triangular) and can be com-

puted very efficiently using Algorithm 2. A similar algorithm can

also be developed to compute C1,0C
T
1,0. If the structure of C0,0 is

disregarded, about 2N2K flops would be required for such opera-
tion, whereas Algorithm 2 necessitates 3

2
N2 −NK + 1

2
K2 flops (if

N = K, this amounts to N2 flops). Note that further optimizations

are possible since C0,0 has lower bandwidth Q. The complexity of
Algorithm 1 is thus dominated by the Cholesky factorization which

requires 1

3
N3 flops [7]. In comparison, an implementation using the

LU factorization would involve 2

3
N3 + 4N2K flops.

Algorithm 2 ComputeB = C0,0C
T
0,0.

1: LetD = C0,0(:, 1)CT
0,0(:, 1)

{ 1

2
N2 flops}

2: B = D

3: for i = 2 toK do
4: for j = i to N do
5: B(i, j) = B(j, i) = B(i, j) + B(i − 1, j − 1)

{NK − 1

2
K2 flops}

6: end for
7: end for
8: for i = K + 1 to N do
9: for j = i to N do
10: B(i, j) = B(j, i) = B(i, j) + B(i − 1, j − 1) − D(i −

K, j − K)
{(N − K)2 flops}

11: end for
12: end for

5. EXPERIMENTAL RESULTS

We now assess the performance of the proposed MMSE equalizer.

For this purpose, we focus our attention on a multicarrier system
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Fig. 2. Average bit rates obtained for α = 0.2, Q = 16, J = 16
(sufficient guard length).

with M = 64 and K = 72, where G(z) and S(z) both represent
redundant perfect reconstruction DFT filter banks. The filter banks

are characterized by a prototype filter of 1600 taps in total (25 taps

per subcarrier) which is designed using the procedure described in

[4]. The transceiver is simulated in a DSL-like environment. The

sampling rate is set to 2.208 MHz and the channel is time-invariant.

Experiments are conducted using a white Gaussian noise char-

acterized by a flat power spectral density (PSD) of −55 dBm/Hz.
Performance is measured in terms of achievable bit rates as obtained

using the procedure outlined in [4]. For comparison purposes, both

the proposed MMSE and zero-forcing equalizers, respectively given

by (10) and (6), are simulated. Moreover, we consider two scenarios:

1. Q = 16 and J = 16, i.e. the guard interval has sufficient
length.

2. Q = 16 and J = 4, i.e. we use the same channel as in the
first case, but we shorten the guard length significantly. Zero

padding is then unable to cancel IBI completely.

Results are presented in Figs. 2 and 3, where we show bit rates aver-

aged over 100 randomly generated channels. Such channels are cre-

ated using an exponentially damped sequence of random variables,

i.e.

c[n] = e
−αn

X[n], n = 0, . . . , Q,

whereX[n] is a sequence of independent identically distributed Gaus-
sian random variables with zero-mean and unit variance.

By considering the case illustrated in Fig. 2 (sufficient guard

length), we notice that the proposed MMSE equalizer performs bet-

ter than the zero-forcing one at low signal-to-noise ratios (SNR).

However, at high SNR, an opposite observation can be made. Such

response is a consequence of the fact that our MMSE approach does

not minimize the error signal of the overall system, but only from

the modulator output to the demodulator input. In this situation, one

could design a hybrid equalizer that switches from the MMSE so-

lution to the zero-forcing solution depending on the detected noise

level. When the guard length is insufficient, as shown in Fig. 3, the

MMSE equalizer significantly outperforms the zero-forcing equal-

izer regardless of the SNR. For instance, with a 15 dBm signal power,

the achievable bit rate can be improved by about 23%. The MMSE

equalizer, in this case, is able to compensate for noise at low SNR

and to counterbalance IBI at high SNR.
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Fig. 3. Average bit rates obtained for α = 0.2, Q = 16, J = 4
(46% of transmitted power is outside the guard interval).

6. CONCLUSION

In this paper, we have developed a block linear equalizer based on

the MMSE criterion that is suitable for a zero padded multicarrier

system. We did not necessarily assume sufficient guard length and

thus IBI was considered during the design process. We have also

derived a fast implementation based on the Cholesky factorization.

Experiments show that in the presence of IBI, the proposed equal-

izer performs significantly better than the zero-forcing one. Possible

future work includes the consideration of the true MMSE between

x̂[n] and x[n].
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