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ABSTRACT

A novel joint TOA and AOA estimator is proposed for impulse radio
Ultra-Wideband (IR-UWB) systems, in which a uniform linear array
of antennas is employed at the receiver. The proposed method con-
sists of two steps: (1) coarse estimation of the TOA and the average
power delay profile; (2) joint TOA refinement and AOA estimation
by maximization of a novel log likelihood function (LLF) using the
coarse estimates from the first step. The derivation of the LLF is
based on an original approach in which the pulse image from the
primary path is modeled as a deterministic component while the su-
perposition of the images from the secondary paths is modeled as a
Gaussian random process. In addition, a special gating mechanism is
used to characterize the secondary paths, thereby leading to a previ-
ously unknown form of the LLF in step (2). According to simulation
experiments based on standard UWB channel models, our approach
exhibits superior performance to that of a competing scheme from
the recent literature.

Index Terms— Ultra wideband, angle of arrival, time of arrival,
average power delay profile, maximum likelihood

1. INTRODUCTION AND RELATION TO PRIOR WORK

Due to the fine time resolution nature of ultra wideband (UWB) sig-
nals, time of arrival (TOA) estimation with very high accuracy can
be achieved in UWB systems. As a consequence, indoor localiza-
tion of objects using impulse radio UWB (IR-UWB) technology has
been gaining wide acceptance [1]. In a line of sight (LOS) radio
environment, assuming a planar geometry, estimation of the TOA
of the transmitted pulses by three or more (non-collinear) receivers
enables the localization of the desired source through multilatera-
tion [2]. The number of required receivers for localization can be
reduced and the performance of positioning systems can be further
improved if the angles-of-arrival (AOA) of the transmitted pulses can
also be estimated. To this end, the receiver must be equipped with
an array of antennas and have the capability to process their outputs
coherently, allowing for the extraction of spatial information.

Initial attempts in AOA estimation for UWB signals focused on
subspace methods [3, 4]. To apply the traditional subspace method
(as in the narrowband case) to UWB signals, a focusing technique
must be employed [3]. However, subspace-based methods have very
high complexity (as they require an eigenvalue decomposition) and
lead to large estimation errors in rich multipath environments. Re-
cently, there has been much interest in the investigation of new AOA
estimation approaches based on time difference of arrival (TDOA).
TDOA-based methods normally estimate the TOA and AOA using
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a receiver equipped with an antenna array, such as a uniform linear
array (ULA) or a uniform circular array (UCA). In [5], for exam-
ple, joint estimation is performed by calculating a two dimensional
power delay-angle spectrum within the frequency domain. In [6], a
frequency domain approach is also adopted for the joint estimation
of TOA and AOA. In [7], a joint TOA/AOA estimator is proposed
for UWB indoor ranging under line-of-sight (LOS) operating con-
ditions, in which signal samples obtained from an antenna array at
the Nyquist rate are processed in a three-step algorithm to produce
TOA and AOA estimates. These recent methods first obtain TOA
estimates at each antenna (either via time- or frequency-domain pro-
cessing), and then extract the desired AOA by computing TDOAs.
Although their performance is competitive to early schemes [3, 4],
the imposed processing structure limits the achievable accuracy of
the AOA estimate and suggests that other estimators with better per-
formance may exist.

In this paper, we present a novel joint estimator of TOA and
AOA for a multi-antenna IR-UWB receiver based on the maximum
likelihood (ML) criterion. The proposed estimator is obtained in
two steps: (1) coarse estimation of the TOA and the average power
delay profile (APDP); (2) joint refinement of the TOA and estima-
tion of the AOA by maximization of a novel log likelihood func-
tion (LLF) using the coarse estimates from the first step. Besides
the coarse TOA estimation, the first step includes the estimation of
the APDP using least-squares (LS) fitting to a decaying exponen-
tial model, which is not found in prior methods. One of the key
features of our proposed approach lies in the choice of a novel sta-
tistical model, in which the primary and secondary pulse images are
represented by a deterministic component and a zero-mean Gaus-
sian random process, respectively. In particular, this model employs
time-shifted gating functions to characterize the onset of the sec-
ondary paths, which in turn leads to a previously unknown form
of the LLF in step (2). Through numerical simulations based on
standard UWB channel models, the proposed 2-step approach for
joint TOA and AOA estimation is shown to outperform a competing
benchmark method [7] from the literature.

The rest of this paper is organized as follows. Section 2 gives
a description of the system model. Section 3 presents the derivation
of the underlying log likelihood function. Section 4 presents the
proposed algorithm. Simulation results are discussed in Section 5
and Section 6 concludes the paper.

2. SYSTEM MODEL

According to the IEEE 802.15.4a standard, TOA estimation is per-
formed during the ranging preamble of a synchronization header
[8]. The transmitted signal s(t) consists of Ns consecutive sym-
bols of duration Tb, spanning a total interval (observation time) of
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To = NsTb, and can be expressed as

s(t) =

Ns−1∑
j=0

aj
√
Ep w(t− jTb), 0 ≤ t ≤ To (1)

where w(t) is a pulse waveform with duration Tc, Ep denotes the
transmitted energy per pulse and {aj} is a sequence of information
symbols taking values from {+1,−1}. Without loss in generality, a
training sequence with aj = 1, ∀j, is adopted for ranging.

The transmitted IR-UWB signal s(t) propagates through a lin-
ear time-invariant multi-path channel before reaching the IR-UWB
receiver. The latter is equipped with a ULA of Q ≥ 2 identical
antenna elements. Under the far field assumption, the wavefronts
arriving at the receiver’s ULA along different paths can be taken as
planar. In particular, for the primary path (the first one in a LOS
environment), the TOA at the qth antenna can be written as

τq = τ + q∆τ, q ∈ {0, . . . , Q− 1} (2)

where τ denotes the TOA at the reference antenna (q = 0) and ∆τ
is the TDOA between adjacent antennas. For a 2-dimensional ge-
ometry, the TDOA can be expressed in terms of the AOA, θ, as
∆τ = d

c
cos θ, where d is the inter-antenna spacing and c is the

speed of light.
The propagation channel is modeled as a linear time-invariant

single-input multiple-output (SIMO) system with components
Hq{·}. We represent the channel response to the pulse wave-
form w(t) at the qth antenna as a superposition of two distinct
components:

Hq{w(t)} = η(t− τq) + ζq(t) (3)

where η(t) represents the image of pulsew(t) arriving along the pri-
mary path, and ζq(t) represents the total contribution of the images
received along the secondary paths, i.e., excluding the primary one.
We assume that the self-interference between successive symbols is
negligible, that is: Tc + τds < Tb, where τds is the maximum delay
spread of the channel.

We model the primary pulse image η(t) as a deterministic signal
and the superimposed secondary pulse images ζq(t) as independent
Gaussian random processes with zero mean and instantaneous power
(variance)

σ2
q(t) = g(t− τq − Tc)P (t) (4)

where P (t) is the APDP (for an impulse emitted at time 0) and g(t)
is a gating function used to model the onset of the secondary pulse
image after the primary one at t = τq . The additional delay of
Tc in (4) is introduced to account for the duration of the first pulse
image, assumed to be of width Tc. Although in practice the primary
path is not always resolvable, this assumption is still effective in the
application of our approach as checked in the simulations later. As
a gating function, we adopt a unit step, i.e., g(t) = 0 for t < 0 and
1 for t ≥ 0, but other choices are possible. The APDP typically
takes the form of multiple exponentially decaying clusters whose
parameters can be estimated using the techniques in [9]. It can also
be roughly represented by a single decaying exponential function.

Furthermore, we model the space-time cross correlation be-
tween the secondary pulse image signals as

E[ζq(t)ζq′(u)] = σq(t)σq′(u)δ(t− u)%(q, q′) (5)

where δ(t) is the Dirac delta function and %(q, q′) is the spatial cor-
relation. The use of δ(t− u) is motivated by the fact that the extent
of the temporal correlation for multipath components is usually very
small [10, 11]. For a dense multipath environment, the spatial cor-
relation decreases rapidly with the inter-antenna spacing [12], and

accordingly, we set %(q, q′) = 1 for q = q′ and 0 otherwise, al-
though a more general model could be employed.

Finally, the noisy IR-UWB signal received at the qth antenna
after multipath propagation, can be expressed as

rq(t) = Hq{s(t)}+ nq(t), 0 ≤ t ≤ To (6)

where nq(t) is an additive noise term modeled as a spatially and tem-
porally white Gaussian process with zero mean and known power
spectral density level σ2

n. We assume that the noise terms nq(t) are
statistically independent from the secondary pulse images ζq′(t).

In this work, our goal is to jointly estimate the TOA and AOA
of the primary path, which is equivalent to estimating τ and ∆τ in
(2), from the received antenna signals {rq(t)} for 0 ≤ t ≤ To and
q ∈ {0, . . . , Q− 1}.

3. DERIVATION OF THE JOINT LLF

We assume that the observed antenna signals rq(t) in (6) are uni-
formly sampled at the rate Fs. Specifically, we let t = nTs where
t is limited 0 ≤ t < To and Ts denotes the sampling period, which
is assumed to satisfy the Nyquist criterion for bandpass signals, that
is: the sampling frequency Fs = 1/Ts ≥ 2B. For simplicity, we
also assume that each symbol consists of exactly M time samples,
i.e., Tb = MTs where M is a positive integer.

As in previous works [6, 7], to improve the processing gain, the
received signals are first averaged over the Ns symbols comprising
the observation interval. Accordingly, let us introduce

x(t) ≡ [x0(t), . . . , xQ−1(t)]T (7)

=
1

Ns

Ns−1∑
j=0

rj(t) = µ(t) + ξ(t) + n(t) (8)

where we define
rj(t) = [r0(t+ jTb), . . . , rQ−1(t+ jTb)]

T (9)

µ(t) =
√
Ep[η(t− τ0), . . . , η(t− τQ−1)]T (10)

ξ(t) =
√
Ep[ζ0(t), . . . , ζQ−1(t)]T (11)

nj(t) = [n0(t+ jTb), . . . , nQ−1(t+ jTb)]
T (12)

and thus the additive noise term becomes n(t) = 1
Ns

∑
j nj(t). In

(7), discrete-time t = nTs is now restricted to the interval [0, Tb), or
equivalently n ∈ {0, 1, . . . ,M − 1}.

Invoking the Gaussian assumption on the multipath signals and
background noise processes, it follows that x(t) is a vector Gaussian
process with non-zero mean, E[x(t)] = µ(t), and Q × Q matrix
auto-covariance function

Kx(t, u) = E
[(
x(t)− µ(t)

)(
x(u)− µ(u)

)T ]
= Kξ(t, u) + Kn(t, u) (13)

where we define Kξ(t, u) = E[ξ(t)ξ(u)T ] and Kn(t, u) =
E[n(t)n(u)T ], u being a discrete-time variable with the same range
as t. Taking into account the band-limited (anti-aliasing) filtering
implicit in the uniform sampling of the antenna signals, the matrix
auto-covariance function of the additive noise n(t) takes the form

Kn(t, u) = δ(t− u)
σ2
n̄

Ts
IQ (14)

where σ2
n̄ = σ2

n/Ns, δ(t) now represents the Kronecker (discrete-
time) delta function (δ(nTs) = 1 if n = 0 and 0 otherwise) and IQ
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is an identity matrix of size Q. Similarly, but this time taking into
account the definition of ξ(t) in (11) and the statistical properties of
ζq(t) over the spatial dimension as per (5), we obtain

Kξ(t, u) = δ(t− u)
Ep
Ts

D(t) (15)

where D(t) is a Q×Q diagonal matrix with diagonal entries σ2
q(t).

Therefore, we can finally express the matrix auto-covariance func-
tion of x(t) as follows,

Kx(t, u) = δ(t− u)
1

Ts
(EpD(t) + σ2

n̄IQ) (16)

Obviously, Kx(t, u) is also a diagonal matrix function.
Define the vector of parameters θ = [τ,∆τ,θη,θζ ], where θη

contains the nuisance parameters associated to the pulse image from
the primary path, η(t), and θζ contains those associated to the pulse
images from the secondary paths, {ζq(t)}. Also let x stand for the
complete set of observations, i.e., {x(t) : 0 ≤ t < Tb}. For the
Gaussian signal model under consideration in this study, the LLF of
the observations can be expressed in the form

ln Λ(x;θ) = −1

2

(
l1(x;θ) + l2(θ)

)
. (17)

The second term in (17), whose general expression can be found
in [13], is not a function of the observed data and has little effect on
the final estimation; we do not take it into consideration in this work.

The data-dependent term l1(x,θ) is given by

l1(x;θ) =
∑
t

∑
u

(x(t)−µ(t))TK−1
x (t, u)(x(u)−µ(u)) (18)

where the range of summation for both t and u is over the set {nTs :
n = 0, ...,M − 1} and the quantity K−1

x (t, u) denotes the inverse
kernel of the auto-covariance function Kx(t, u) (16). The latter is
defined as the solution to the inverse problem:∑

u

Kx(t, u)K−1
x (u, v) = δ(t− v) (19)

where v is a discrete-time variable with the same range as t. For the
special form of the auto-covariance function in (16), it can be easily
verified that the solution to (19) is given by:

K−1
x (t, u) = δ(t− u)Ts(EpD(t) + σ2

n̄IQ)−1. (20)
Upon substitution of this expression in (17) and further manipula-
tions, we find that

l1(x;θ) = Ts
∑
q

∑
t

(xq(t)−
√
Epη(t− τq))2

Epg(t− Tc − τq)P (t) + σ2
n̄

. (21)

It is of interest to examine the nature of the data processing involved
in (21). According to this formula, the ML attempts to minimize
the total energy in the difference signals between each one of the
antenna outputs, xq(t), and properly scaled and time-shifted copies
of the primary pulse image, η(t − τq). This matching process is
affected by a special time-weighting which is novel in our work, and
results directly from the proposed signal model in Section 2. In the
high SNR regime where Ep � σ2

n̄, the combined presence of the
gating function and the slowly decaying APDP in the denominator
of (21) has the equivalent effect of amplifying errors in the initial
part of the integration period, i.e., from 0 to τq + Tc where g(t −
τq − Tc) = 0 as well as in the later part of the integral, i.e., for
t ≥ τds + τq + Tc. In effect, the ML processor attempts to create
a best match between xq(t) and

√
Epη(t − τq) during the initial

period, while ensuring that the instantaneous power in the residual
signals xq(t) −

√
Epη(t − τq) conforms to the available a priori

information about the APDP. In the low SNR regime where Ep �
σ2
n̄, the ML processor simply measures the energy of the difference

signal over the symbol duration.

4. ALGORITHM IMPLEMENTATION

The ML estimates of the TOA and AOA can be found by minimizing
the data-dependent term (21) of the LLF, assuming that estimates of
P (t) and

√
Epη(t) are available. In theory, this minimization can

be performed by carrying a full two-dimensional search of (21) over
the set of possible values for τ and ∆τ . The computational cost as-
sociated with a full search is, however, prohibitive and this approach
is not feasible in practice. Next, we describe a low-cost practical
alternative that consists of two steps: In the first step, we perform
a coarse estimation of the TOA, based on which we then obtain a
rough estimate of P (t). In the second step, using the obtained esti-
mates of TOA and P (t) we find the best combination of τ and ∆τ
that minimizes (21). These steps are discussed in detail below.

4.1. Step one: preliminary estimation

4.1.1. Coarse TOA estimation

We start with a preliminary estimation of the TOA at each antenna.
For this, we chose to use the threshold crossing (TC)-based TOA es-
timation method [14] due to its simplicity, although other estimation
methods from the literature could be used. The TC method esti-
mates the TOA at the qth antenna as the smallest value of time t for
which the instantaneous power at the antenna output, x2

q(t), exceeds
a given threshold λ, i.e.,

τ̂q = arg min
0<t<Tu

{x2
q(t) > λ} (22)

where Tu is the search range (uncertainty region) for the TOA. In
our work, the value of the threshold λ is adjusted experimentally to
obtain the best TOA estimation performance, considering the trade-
off between the early detection and miss probabilities. Using the
TOA estimates τ̂q we then obtain an LS estimate of τ as [6, 7]

τ̂LS =
2

Q(Q+ 1)

Q−1∑
q=0

[(2Q− 1)− 3q]τ̂q (23)

4.1.2. APDP estimation

To estimate the APDP, we fit the instantaneous power at the output of
the reference antenna to a single exponentially decaying model1. Let
lo = bτ̂LS/Tsc and L = bτds/Tsc denotes the maximum channel
delay spread in samples, with bc being the floor function. More
specifically, we fit the segment of P0(l) = x0((lo + l)Ts)

2 from
l = 0 to L − 1, to the function βe−lα, with the parameters α > 0
and β > 0. We perform the curve fitting in the log domain using the
LS method, i.e.,

arg min
α,β

L−1∑
l=0

µl| lnP0(l)− (lnβ − lα)|2. (24)

where the weight µl = 1 if there is a local maximum, i.e., P0(l −
1) < P0(l) > P0(l + 1), and µl = 0 otherwise. This choice of
µl allows us to include in the fitting only the local maxima, as they
are more likely to correspond to multipath components, and to mask
out the noisy low power data points [9]. Denoting as β̂ and α̂ the
solutions to (24), we obtain a coarse estimate of the APDP as

P̂ (nTs) = β̂e−α̂(n−lo), n = 0, ...,M − 1. (25)

We note that, the initial samples of P̂ (t) are not critical since they
will be zeroed by the gating function g(t− Tc − τq) in (21).

1This model is a simple yet effective approximation to the double-
exponential decaying model suggested by the IEEE 802.15.4a task group
[15].
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Fig. 1. RMSE of AOA estimates versus SNR for different number
of antennas (Fs=16GHz).
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Fig. 2. RMSE of TOA estimates versus SNR for different number of
antennas (Fs=16GHz).
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Fig. 3. RMSE of AOA estimates versus SNR for different sampling
rates (Q=2).

4.2. Step two: joint estimation of τ and ∆τ

After obtaining τ̂LS and P̂ (t), we can estimate τ and ∆τ by per-
forming a two dimensional search for the combination of τ and ∆τ
that minimizes (21). To reduce the computational complexity, we
only search for τ in a neighbourhood around τ̂LS instead of the
whole uncertainty region Tu, i.e., τ ∈ [τ̂LS − kTc, τ̂LS + kTc]
where k is a small integer. As for ∆τ , we only need to search in the

interval [−d/c, d/c] since |∆τ | = | d
c

cos θ| ≤ d/c.
As can be seen from (21), to perform the search described above,

we need an estimate of
√
Epη(t). To this end, for each candidate

value of τ , we estimate
√
Epη(t) as the segment of x0(t) over the

interval of duration Tc starting at τ , i.e.,√
Epη̂(t; τ) = x0(t+ τ), 0 ≤ t < Tc. (26)

5. RESULTS AND DISCUSSIONS

In this section, the performance of the proposed joint estimator of
the TOA and AOA is evaluated using computer simulations. We
use a Gaussian doublet as the transmitted pulse w(t), with duration
Tc = 0.5ns and an effective bandwidth B = 4GHz. We consider
the following system parameters in our experiments: Tb = 200ns,
Tu = 80ns, τds = 120ns and Ns = 1000. Different values of the
sampling rate Fs are employed, from 16 to 64GHz. The receiver is
equipped with a ULA of Q ∈ {2, 3, 4} identical antenna elements,
with inter-element spacing d = 50cm.

Channel models based on the IEEE 802.15.4a standard [15] are
employed. However, to account for the presence of an antenna ar-
ray at the receiver, certain modifications are made. In particular, we
generate the channel response according to model CM1 (residential
LOS) and then add the spacial dependency to the model according
to [16, 17]. The AOA of each path follows a Laplacian distribution,
with a standard deviation of 5◦ and a mean following a uniform dis-
tribution in the range [45◦, 135◦] and varying from cluster to cluster.

The root mean square error (RMSE) of both final TOA and AOA
estimates are calculated. The signal-to-noise ratio (SNR) is defined
as Es/σ2

n, where Es is the energy per symbol.
Fig. 1 compares the AOA estimation performance of our pro-

posed method to that in [7] for ULAs withQ = 3 and 4 antennas and
Fs=16GHz. While the AOA estimation accuracy of both methods
improves with increasing the number of antennas, it can be seen that
the proposed method achieves a significantly better accuracy under
the same choice of parameters. At high SNR, the attainable RMSE
value of the proposed method is only limited by the step size used in
the ML search (represented as the sampling limit in Fig. 1). Results
for TOA estimation in Fig. 2 also show a superior performance with
the proposed method.

Fig. 3 compares the AOA estimation performance of the pro-
posed method when using different sampling rates, i.e., Fs=16, 32
and 64GHz. It is clearly shown that the accuracy increases as the
sampling rate increases. In addition, the performance is compared to
the Cramer-Rao bound as obtained in [18].

6. CONCLUSION

We proposed a novel joint TOA and AOA estimator for impulse ra-
dio IR-UWB systems. The proposed method consists of two steps:
(1) coarse estimation of the TOA and APDP; (2) joint estimation of
the TOA and AOA by maximization of a novel log likelihood func-
tion (LLF). In particular, with 2 antennas spaced 50cm apart, a SNR
of 10dB and a sampling rate of 16GHz, it can provide an angular
accuracy around 0.7◦ and timing accuracy of less than 0.01 ns (3cm
in range). Furthermore, the accuracy improves with increasing the
number of antennas.

5193



7. REFERENCES

[1] D. Dardari and R. D’Errico, “Passive ultrawide bandwidth
RFID,” in Proc. IEEE Global Telecommunications Conference,
Dec. 2008, pp. 3947–3952.

[2] N.A. Alsindi, B. Alavi, and K. Pahlavan, “Measurement and
modeling of ultrawideband TOA-based ranging in indoor mul-
tipath environments,” IEEE Trans. Veh. Technol., vol. 58, no.
3, pp. 1046–1058, March 2009.

[3] H. Keshavarz, “Weighted signal-subspace direction-finding of
ultra-wideband sources,” in Proc. IEEE Int. Conf. on Wire-
less and Mobile Computing, Networking and Communications,
Aug. 2005, pp. 23–29.

[4] V.V. Mani and R. Bose, “Direction of arrival estimation and
beamforming of multiple coherent UWB signals,” in Proc.
IEEE Int. Conf. on Communications, May 2010, pp. 1–5.

[5] E. Lagunas, M. Najar, and M. Navarro, “UWB joint TOA and
DOA estimation,” in Proc. IEEE Int. Conf. on UWB, Sep. 2009,
pp. 839–843.

[6] M. Navarro and M. Najar, “Frequency domain joint TOA and
DOA estimation in IR-UWB,” IEEE Trans. Wireless Commun.,
vol. 10, no. 10, pp. 1–11, Oct. 2011.

[7] L. Taponecco, A.A. D’Amico, and Mengali U., “Joint TOA
and AOA estimation for UWB localization applications,” IEEE
Trans. Wireless Commun., vol. 10, no. 7, pp. 2207–2217, July
2011.

[8] Z. Sahinoglu and S Gezici, “Ranging in the IEEE 802.15.4a
standard,” in Proc. IEEE Annual Wireless and Microwave
Technology Conference, Dec. 2006, pp. 1–5.

[9] F. Shang, B. Champagne, and I. Psaromiligkos, “Joint esti-
mation of time of arrival and channel power delay profile for
pulse-based UWB systems,” in Proc. IEEE Int. Conf. on Com-
munications, June 2012.

[10] H. Luecken, C. Steiner, and A. Wittneben, “ML timing esti-
mation for generalized UWB-IR energy detection receivers,”
in Proc. IEEE Int. Conf. on UWB, Vancouver, Sep. 2009, pp.
829–833.

[11] K. Makaratat, T.W.C. Brown, and S. Stavrou, “Estimation of
time of arrival of UWB multipath clusters through a spatial
correlation technique,” IET Microw. Antennas Propag., vol. 1,
no. 3, pp. 666–673, June 2007.

[12] G.D. Durgin and T.S. Rappaport, “Effects of multipath angu-
lar spread on the spatial cross-correlation of received voltage
envelopes,” in Proc. IEEE Vehicular Technology Conference,
June 1999, pp. 996–1000.

[13] H. L. Van Trees, Detection, Estimation, and Modulation The-
ory, part III, New York: Wiley, 1971.

[14] D. Dardari, C.-C. Chong, and M.Z. Win, “Threshold-based
time-of-arrival estimators in UWB dense multipath channels,”
IEEE Trans. Commun., vol. 56, no. 8, pp. 1366–1378, Aug.
2008.

[15] A.F. Molisch, K. Balakrishnan, C.C. Chong, S. Emami,
A. Fort, J. Karedal, J. Kunisch, H. Schantz, U. Schuster, and
K. Siwiak, “IEEE 802.15.4a channel model-final report,”
IEEE 802.15 WPAN Low Rate Alternative PHY Task Group 4a
(TG4a), Nov. 2004.

[16] R.J.-M. Cramer, R.A. Scholtz, and M.Z. Win, “Evaluation of
an ultra-wide-band propagation channel,” IEEE Trans. Anten-
nas Propag., vol. 50, no. 5, pp. 561–570, May 2002.

[17] S. Venkatesh, V. Bharadwaj, and R.M. Buehrer, “A new spatial
model for impulse-based ultra-wideband channels,” in Proc.
IEEE Vehicular Technology Conference, Sep. 2005, pp. 2617–
2621.

[18] A. Mallat, J. Louveaux, and L. Vandendorpe, “UWB based
positioning in multipath channels: CRBs for AOA and for hy-
brid TOA-AOA based methods,” in Proc. IEEE Int. Conf. on
Communications, June 2007, pp. 5775–5780.

5194


