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ABSTRACT

In this paper we propose a fully convolutional neural network
(CNN) for complex spectrogram processing in speech en-
hancement. The proposed CNN consists of one-dimensional
(1-d) convolution and frequency-dilated 2-d convolution, and
incorporates a residual learning and skip-connection struc-
ture. Compared with the state-of-the-art, the proposed CNN
achieves a better performance with fewer parameters. Experi-
ments have shown that the complex spectrogram processing is
effective in terms of phase estimation, which benefits the re-
construction of clean speech especially in the female speech
case. It is also demonstrated that the model yields a con-
vincing performance with small memory footprint when the
number of parameters is limited.

Index Terms— speech denosing, complex spectrogram,
phase processing, frequency dilation, fully convolutional neu-
ral network

1. INTRODUCTION

Recent studies on speech enhancement have resorted to deep
learning as a primary tool to develop a data-driven method.
In particular, the fully-connected deep neural network (for
the purpose of simplicity, we call it DNN in this paper) has
been widely adopted and investigated as a non-linear mapping
function between noisy features and clean ones [1-4]. Most
recently, some researchers have attempted to replace DNN
by CNN [5, 6] to provide a more flexible architecture. Park
and Lee [5] proposed a fully convolutional network for speech
denosing, where CNN is employed to extract the features for
the reconstruction of the clean speech. Rethage et al. [6] ap-
plied WaveNet [7], a CNN for speech synthesis, to directly
estimate clean speech in the time-domain.

It should be mentioned that in most of the existing algo-
rithms, the speech spectral phase remains unchanged. Yet
studies have shown that employing spectral phase can fur-
ther improve the perceptual quality of speech [8—10]. Specif-
ically, Krawczyk and Gerkmann [10] showed that the percep-
tual evaluation of speech quality (PESQ) could be improved
by around 0.2 when using the combination of noisy magni-
tude and estimated phase for speech reconstruction. While
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it may be beneficial to process noisy phase for a better de-
noising performance, yet it is difficult to directly estimate the
true phase of clean speech from noisy phase using deep learn-
ing, possibly due to the wrapping effect and the lack of phase
structure in human speech [3, 11].

Besides, some speech enhancement approaches have been
developed based on the processing of complex noisy spec-
trogram, in which the noisy phase is implicitly processed.
Williamson et al. [3] proposed a DNN-based masking tech-
nique to estimate complex masking from a spectral feature
set. Fuetal. [11] employed a CNN to estimate clean complex
spectrograms directly from noisy spectrograms. Though per-
formance is improved compared with DNN-based magnitude-
processing method, no further evidence is given to show the
effectiveness of phase estimation through complex spectro-
gram processing.

In this paper, we propose a new CNN structure for com-
plex spectrogram processing. Compared with the previous
work [3, 11], the proposed CNN is fully convolutional, and
consists of 1-d convolution and frequency-dilated 2-d convo-
lution. Frequency dilation is employed to produce a large
receptive field with small filters. Hence the proposed CNN
can be configured with fewer parameters while still achiev-
ing a competitive performance. We verify the effectiveness
of phase processing through complex spectrogram estimation
and demonstrate the improved perceptual quality of the pro-
cessed speech. Thanks to the fully convolutional architecture,
the proposed CNN still yields a good performance when the
number of parameters is limited and the memory footprint
is kept relatively small, which leads to a memory-efficient
model that facilitates the implementation of the proposed al-
gorithm on embeded devices.

2. ALGORITHM DESCRIPTION

2.1. Complex Spectrogram

Consider a noisy speech signal 2:(t) = s(t)+n(t), where s(t)
and n(t) are the clean speech and additive noise, respectively,
and ¢ is the discrete-time index. The complex spectrogram of
x(t) is defined as its short time Fourier transform (STFT) over
consecutive frames, i.e., X (k,1) = STFT{z(¢t)}. The com-
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plex spectrogram can be expressed as X (k,1) = X,.(k,l) +
jXi(k,l), where X,.(k,1) = Re{X(k,)} and X;(k,1) =
Im{X (k,1)}. The task of complex spectrogram processing is
to estimate the complex spectrogram S(k, 1) of the clean sig-
nal s(t), either directly from X (k,[), or from other features
obtained from xz(t). With the estimated complex spectrogram
S(k,1) = S.(k,1) + jSi(k,1), the inverse short time Fourier
transform (iSTFT) is applied to obtain the estimated clean sig-
nal, i.e., s(t) = iSTFT{S(k,1)}. It has been shown that the
estimation of complex spectrogram is strongly related to the
segmental signal-to-noise ratio (SSNR) [11].

The benefits of employing complex spectrogram estima-
tion are twofolds. Firstly, in contrast to conventional magni-
tude estimation, by processing complex spectrogram we are
estimating the magnitude and phase at the same time, while
avoiding the difficulty of phase estimation with neural net-
works. Secondly, thanks to the similarity between real and
imaginary spectrograms [3, 11], it is possible to use a single
neural network to estimate them jointly.

2.2. Dilated 2-d and 1-d frequency convolution

The input to the CNN consists of a limited number of succes-
sive spectrogram frames. However, the frequency dimension
is usually several hundreds and requires a larger size of recep-
tive field in order to exploit the contextual information. Thus,
as a common practice, it is necessary to increase the size of
the filters in the frequency dimension, e.g., Fu er al. [11] used
a filter with size of 25 in frequency in their implementation.

Dilated convolution has been successfully applied in vari-
ous contexts including imaging segmentation [12] and speech
synthesis [7]. In dilated convolution, whenever a filter weight
is applied to the input, a fixed number of input values are
skipped, which makes the size of receptive field larger than
that of the filter. Stacking dilation convolution results in an
exponential expansion of the receptive field.

Figure 1 shows the frequency-dilated 2-d convolution. By
stacking this dilated convolution with an increasing dilation
factor, one could keep the size of filter relatively small, while
obtaining a large receptive field in frequency. For example,
stacking 7 layers of such a frequency-dilated convolution with
a filter size of 3 gives a receptive field with size 255, which
is enough to cover a spectrogram with 500-point discrete
Fourier transform (DFT).

The 1-d convolution is a special case where the filter is
only of 1-dimension. In Fig. 2, the 1-d convolution is applied
along frequency axis. It is more efficient than 2-d convolution
when the goal is to increase the size of receptive field along
frequency axis only. Hence it has been used in some recent
works [5, 13].

time ———

Fig. 1. Frequency-dilated convolution. The filter size is 3 x 3.
From left to right, the dilation factor for frequency is 1, 2, 4,
respectively. The dilation factor for time remains as 1

frequency

time ——

Fig. 2. Left: 2-d convolution. Right:1-d convolution along
frequency axis

2.3. Network Architecture

Inspired by WaveNet [7], we propose a convolutional network
for complex spectrogram estimation as shown in Fig. 3. It is
fully convolutional and consists of a set of 2-d convolutional
layers (denoted as Conv2d) and 1-d convolutional layers
(Convld). The Conv2d layer uses both frequency-dilated 2-d
convolution and regular 1-d convolution, while the Convld
layer only uses regular 1-d convolution along the frequency
axis. It is possible to combine real and imaginary spectro-
grams as the input [11], yet we find treating them separately
may lead to a better performance.
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i
RelU |—| 1-d convolution .
IR

i
I
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'

Real / Imaginary
Spectrogram

Fig. 3. Proposed CNN architecture

The input to the CNN consists of 13 frames. Stacking
Conv2d layers allows the receptive field of time to increase
linearly. When the size of the receptive field along time axis
equals or exceeds the number of input frames, the central
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frame of the output of Conv2d layers will contain the informa-
tion from all input frames. Hence it is extracted as the input
to Convl1d layers to produce a single-frame output.

Table 1 shows a configuration of the proposed CNN. The
Conv2d layers are stacked 6 times with frequency dilation
increased by a factor of 2 (i.e., 1, 2, 4, 8, 16, 32), which
yields a receptive field of size 253 in frequency and size 13
in time. The Convld layers are stacked 2 times, followed by
the output layer, which is simply 1-d convolution for differ-
ent channels (denoted as 1d-real and 1d-imag in the table) to
separately produce the real-valued frame and the imaginary-
valued frame.

The Conv2d layers also adopt a residual learning and skip-
connection structure [7, 14] to ease the training of a deeper
network. The residual path provides the next Conv2d layer
with lower dimensional data from the previous layer which
may be lost during the convolution process [5], while the skip
connection provides the Conv1d layer with the data processed
at the current Conv2d layer.

Table 1. The Network Configuration (Config.1). The height
of the filter is the size along the frequency axis, and the width
is the size along the time axis. The channel refers to the depth,
or the number of feature maps of convolution.

Layer name | Filter name | Height | Width | Channel
dilated 2d 5 3 48
Conv2d 1d-skip 1 1 48
1d-residual 1 1 48
Convld 1d 3 1 96
Output 1d-real 3 1 1
1d-imag 3 1 1

3. EXPERIMENTS

The experiment is conducted using TIMIT database [15], in
which 780 utterances from both female and male speakers
are used for the training and 90 utterances used for testing.
Four typical non-stationary noises (babble, street, factory and
restaurant) are randomly truncated and used for both training
and testing stages.The sampling rate is set to 16 kHz. The
SNR levels for training and testing stages are mismatched,
with -5 dB, 0 dB, 5 dB, 10 dB for training and -6 dB, 0 dB, 6
dB, 12 dB for testing stage.

3.1. Comparison with previous models

The proposed CNN is compared with two other complex-
spectrogram processing methods: CIRM [3] and RI-CNN
[11]. CIRM is a DNN-based method that estimates a complex
mask from a set of spectral features. RI-CNN is a CNN model
that consists of convolution layers and fully-connected layers,

and takes complex spectrogram as input. For a fair compari-
son, all networks are trained and tested with the database and
the SNR level described above. Aforementioned SSNR and
PESQ are used as performance metrics.

All models use 500-point DFT with 50% overlap. Apart
from the DFT length, both reference methods are imple-
mented with the configuration described in the original pa-
pers, which makes the number of parameters for RI-CNN,
CIRM and the proposed CNN to be 775K, 3.87M and 243K,
respectively. Table 2 shows the result obtained from each net-
work. Clearly, the proposed CNN outperforms RI-CNN,
while achieving a comparable performance to CIRM but with
around 16 times fewer of parameters.

3.2. Benefit to phase processing

To further investigate whether complex spectrogram process-
ing is beneficial to phase estimation, we combine the clean
magnitude with either noisy phase or estimated phase from
estimated complex spectrogram to synthesize the speech.
We have compared the proposed CNN with the two other
complex-spectrogram processing methods. The average
PESQ scores for both female and male speech are shown
in Fig. 4.
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3.6
3.5
3.4

3.3

3.2 I
3.1 I I

3.0 0 I

Noisy CIRM RI-CNN Proposed Noisy CIRM RI-CNN Proposed
female male

m -6 dB 0dB 6dB 12dB

Fig. 4. Average PESQ score on female and male speech by
replacing phase

Again, the proposed method shows a comparable perfor-
mance with CIRM. RI-CNN is found to be the least effec-
tive in phase processing with complex spectrogram estima-
tion. For female speech, a maximal improvement of 0.15 is
observed. Yet for male speech, the improvement is less signif-
icant, possibly indicating that the perceptual quality of female
speech is more prone to phase distortion than that of male, and
thus benefited more from phase processing.

It is worth mentioning that, current complex spectrogram
estimation algorithms may be less effective than algorithms
like [10], which estimates phase directly and could improve
the PESQ score without processing magnitude. For complex
spectrogram estimation algorithms, however, when using the
combination of noisy magnitude and estimated phase from the
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Table 2. PESQ and SSNR score of different models

metrics PESQ SSNR
SNR -6 dB 0dB 6dB 12dB -6 dB 0dB 6dB 12dB
unprocessed 1.296 1.674 2.124 2.549 —12.454 —8.046 —2.722 2.994
CIRM 1.740 2.267 2.706 3.071 —0.874 2.242 5.042 7.504
RI-CNN 1.723 2.018 2477 2711 —2.891 0.188 2.710 4415
proposed 1.861 2.337 2.741 3.079 —1.723 2.083 5.629 8.948

processed complex spectrogram, the improvement on PESQ
is rather limited.

3.3. Limiting parameters

Some recent works that utilize CNN for speech processing
have considered a situation where the number of parame-
ters is limited [S5, 16]. Thus in the third experiment, we
have configured the model in a parameter-controlled manner.
In addition, the memory footprint of the proposed CNN is
also considered. While it is rather implementation depen-
dent, a rough measure could be (size of spectrogram)x(2d
convolution channel)x(1d convolution channel of Conv2d
layers)x(size of float). Two configurations of the proposed
CNN with parameters at the level of 100K and 50K are
tested for the overall denoising performance.

Table 3. A network configuration where the number of pa-
rameters is 97K (Config.2)

Layer name | Filter name | Height | Width | Channel
dilated 2d 5 3 32
Conv2d 1d-skip 1 1 24
1d-residual 1 1 24
Convld 1d 5 1 64
Output 1d-real 17 1 1
1d-imag 17 1 1

By stacking 6 Conv2d layers and 2 Convld layers, the
configuration shown in Table 1 has 243 K parameters, and the
memory footprint is around 29 megabytes (MB). Meanwhile,
two configurations shown in Table 3 and Table 4 keep the
number of Conv2d and Convld layers unchanged, but uses
fewer filter channels to reduce the number of parameters and
the memory footprint at the same time. The config.2 shown
in Table 3 has 97K parameters, and the memory footprint is
10 MB. The config.3 in Table 4 further reduces the parame-
ters and the memory footprint to 50K and 6 MB, respectively.
Figure 5 illustrates the overall performance for all three con-
figurations. While the model with 97K parameters still pro-
duces a good overall result, the one with 50K suffers more
loss on PESQ score. Generally speaking, config.2 seems to

reach a good balance between the denosing performance and
memory efficiency.

Table 4. A network configuration where the number of pa-

rameters is 50K (Config.3)

Layer name | Filter name | Height | Width | Channel
dilated 2d 5 3 32
Conv2d 1d-skip 1 1 16
1d-residual 1 1 16
Convld 1d 1 1 48
Output 1d-real 17 1 1
1d-imag 17 1
4.0 3.73
Lo1 2.50 2.40 2.61 299259
2.0 —‘
0.0
NoiSye config.1 (243 K) config.2 (97 K)  config.3 (50 K)
2.0
-4.0
6.0 -5.06

m PESQ SSNR

Fig. 5. Performance comparison with different model config-
urations

4. CONCLUSION

In this study, we have proposed a fully convolutional neural
network with frequency-dilated 2-d convolution for complex
spectrogram processing. Through a number of experiments,
we have demonstrated that the proposed CNN-based method
performs very well for complex spectrogram estimation, and
that it is also beneficial to phase estimation. We have also paid
attention to the memory efficiency of the proposed CNN by
considering limited number of parameters and memory foot-
print, leading to a trade-off between the model complexity
and the achievable performance.
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