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ABSTRACT

This paper presents an exact solution to the problem of max-
imum likelihood time delay estimation over arbitrary observation
time 7. That is, the standard assumption T » T, + dpa made in
the derivation of the asymptotic maximum likelihood (AML) esti-
mator, where 1. is the correlation time of the various processes
involved and dp,, the maximum permissible delay, is relaxed.
The exact maximum likelihood (EML) processor is shown to con-
sist of a special finite time beamformer, followed by a scalar post-
processor based on the eigenvalues and eigenfunctions of a certain
integral equation. The solution of this integral equation is obtained
for the case of stationary signals with rational power spectral densi-
ties (PSD). The performances of EML and AML are compared by
means of computer simulations for a first order low-pass PSD. The
results show that EML. can lead to a significant improvement in
performances (bias, variance, large errors) when the condition
T 2 T, + dmax is DOt satisfied.

L INTRODUCTION

In (1), the asymptotic maximum likelihood (AML) time delay
estimator is derived under the assumptions that the signal and noise
statistics are stationary and that the condition T 3 T, 4+ dyp., i
satisfied, where T is the length of the observation interval, 7, is the
maximum correlation time of the random processes involved, and
dmax is the maximum permissible delay. In many practical appli-
cations of time delay estimation (TDE), however, the signal and
noise statistics and, more importantly, the time delay itself, can not
be considered stationary unless small observation times T are used.
In other applications, the length of the data set available may sim-
ply be insufficient for the condition T 3 T, + dyy, to be satisfied.
These considerations justify the need for new TDE techniques that
can be used over arbitrarily small observation intervals.

In this paper, we present an exact analytical solution to the
problem of maximum likelihood TDE which is valid for arbitrary
observation times T. By means of computer simulations, we also
compare the performances of the resulting exact maximum likeli-
hood (EML) estimator to those of the AML estimator.

II, PROBLEM FORMULATION

We consider the family of vector random processes x(¢;d),
parametrized by the delay variable d € [~d nex,dmax], and defined
as follows:

x(t:d)=a@;d)+n(), 0<¢<T, (63}
a(t)
acrid) = [,,(, _d)] e {:’,;8] : @

where the signal component a(s) and the additive noise com-
ponents #;(¢), i=1,2, are zero mean, uncorrelated, stationary Gaus-
sian random processes with autocorrelation R,(1) and R, (1),
respectively. We assume that the power spectral density (PSD) of
the process a(r), defined as

Ga()= | R,y e~ ™" d, 3)

takes the irreducible form

N(?
D(s»)
where N(.) and D(.) are real coefficient polynomials of degree m
and n respectively, satisfying the following conditions: (a) N (s%)
can only have jo-axis zeros of even multiplicities; (b) D (s2) has
no jw-axis zero and; (¢) n 2m+1. We further assume that the
additive noise components #;(¢) are white, that is,

N
Ro (@)= = 1), ®

Gy = y $=je, “@

N

where =0 > 0 represents the noise power level in the individual
components of x(¢;d).

Given an observation (i._e. a particular realization)
x(), 0< ¢ < T, of the process x(+;d"), where d° represents the true
value of the unknown delay.parameter, the TDE problem consists
in finding an estimate of d” which is optimal in some statistical
sense. One such estimate is the maximum likelihood (ML) esti-
mate.

By definition, the ML estimate dy;, of d" is the value of d at
which the log-likelihood function In A(x;d) attains a maximum,
ie.,

Ay = argmax (In A(x;d):~d pax SA<d ax ) (6)

The log-likelihood function admits the following series representa-
tion:

InAd) = 1106d) + I2(d), (O]
oM@ T 2
hoady= - Z R+ Vo2 lg(b: dx@d 2, (®

lo(@)= L 3 101 + 20 (N o). ©)
i=1

The superscript 7 in (8) denotes transposition. A;(d) and ®;(z;d)
are the eigenvalues and normalized vector eigenfunctions, respec-
tively, associated with the autocorrelation R,(t;d) of the process
a(t;d). In the general case, these eigenvalues and eigenfunctions
will depend upon the parameter 4. However, in order to simplify
the notations, we shall subsequently omit this dependence. The
determination of the A; and ®;(r) is the subject of the next two sec-
tions.

1. DIMENSIONALITY REDUCTION

Rather than considering the matrix integral equation that
defines the A; and ®;(¢) directly, we apply the technique of dimen-
sionality reduction developed in [2]. This technique can be thought
of as a generalization of the material presented in [3]. Its advan-
tages are twofold. First, it permits us to obtain the @;(z) by apply-
ing a simple linear transformation to the properly nomalized
eigenfunctions of a scalar integral equation whose eigenvalues are
precisely the A;. Since solving a scalar integral equation is concep-
tually simpler than solving a matrix integral equation, this property
in itself is very important. Second, the technique of dimensionality
reduction provides information regarding the structure of the
optimum processor specified by (7). More precisely, it decomposes
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this processor into a generalized beamformer followed by a scalar
post-processor.

For the case 0 <d <T, the technique of dimensionality reduc-
tion yields the following results: Define the step function

1 if —d<t<0
p()=42 if O<t<T—d (10)
1 if T-d<t<T
and let A; and y;(¢) be the eigenvalues and eigenfunctions of the
scalar integral equation
T

| RaC—uywiCw) plu) du = 1w, —d<e<T, an
-d

with the y;(¢) satisfying the orthonormality condition
T

Jwio i@ de =3 2)
-4
Then, the functions
i)
Q;(t)= vit—d)| 0<:sT. {13)

are the nommalized eigenfunctions of R, (t:d) with eigenvalues A;.
For the cases d>T and d <0, the technique of dimensionality
reduction yields similar results, i.e., the eigenfunctions ®;(t) are
given by (13) with A; and y;(#) satisfying integral equations similar
to (11) and (12), the only difference being in the step function p(f).
In the case d<0, there is no need to consider these modified
integral equations since the following relations can be used directly
(the dependence upon d has been reintroduced temporarily),

Mild) =M(1d1), (14)
yilt;d) =y (e=1d1;1d1), 0S:<T+ldl. (15)
In the remainder of this paper, we consider only the case 0 <d <T.

We now look at the processor configuration that results from
the specific structure of the eigenfunctions ®;(z). Making the sub-
stitution (13) in (7), we find that

2
hdy = X LN O (16
T
yi= [ W)y de, an
-

where the scalar process y(¢) is given in terms of the components
x1(z) and x,(z) of x(z) by

The resulting processor configuration is shown in Figure 1. It con-
sists of a special finite time beamformer, whose action is specified
by (18), followed by a scalar post-processor based on the A; and
Vi(t). A number of important observations can be made regarding
the finite time beamforming operation (18). First, it features
discontinuities at #=0 and +=T'~d. These discontinuities, which we
refer to as edge effects, result from the fact that the observation
interval [0,T] is finite. Second, the middle term on the right hand
side of (18), which becomes the dominant term when T'»d,
corresponds to a simple, coherent, delay and sum beamforming
operation. Finally, the operation (18) is robust in the sense that it is
independent of the signal statistics. The scalar post-processor per-
forms the operations specified by (16) and (17) on the output y (f)
of the finitc time beamformer. In practice, only a finite number N
of terms is included in (16).

IV.SOLUTION OF THE REDUCED INTEGRAL EQUATION

In this Section, we present an explicit operational solution
algorithm for the reduced integral equation (11) which is applicable
to stationary signal processes a(t) with rational PSD’s. Before we
begin, it is important to understand that previous techniques avail-
able for the determination of the eigenvalues and eigenfunctions
associated with the autocorrelation R,(7) of such processes do not
apply in this case because of the non-constant step function p(z) in
equation (11). Moreover, because the off-diagonal elements of the
matrix PSD G ,(@;d) of the process a(t;d) contain exponential fac-
tors of the type e/, neither it is possible to solve the matrix
integral equation specifying the A; and ®;(s) directly by a straight-
forward multidimensional extention of the techniques already
available. The novelty in the algorithm presented below is that it
can deal with the non-constant step function p(¢) defined in (10).
In fact, it could easily be extended to arbitrary finite step functions
that are symmetric with respect to the middle point of their interval
of definition.

In order to facilitate the understanding of the solution algo-
rithm for equation (11), we begin by stating three simple but
important properties that are satisfied by the eigenvalues and eigen-
functions of this equation.

Property 1. The eigenvalues A; arc bounded. More precisely,
0<A; <7, where

¥=2max {G,(0):—oo<m<oo}, (19)
Property 2. The eigenfunctions () are continuous on the inter-
val [4,T].
Property 3. There exists a complete orthonormal (in the sense of

(12)) set of eigenfunctions {y;()}, such that each eigenfunction in
the set.satisfies the symmetry relation

*p(e+d) if 4«0 VilO) = & T —d-0), @0
YO =101 @) +x26+d) i 0<t<Td as) where €;, referred to as the symmetry index, is either equal to +1 or
x1(8) if T—d<t<T to-1.
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Figure 1. Configuration of the EML processor



Our solution algorithm for equation (11) generalizes Youla’s
technique [4] for the determination of the eigenvalues and eigen-
functions of R,(t) in the absence of the step function p(t). Besides
the various modifications that need to be made in order to account
for this non-constant step function, there is one major distinction
between our approach and Youla’s approach that deserves some
explanations. What makes Youla's technique efficient is the use of
a symmetry argument that reduces by half the number of some
unknown eigenfunction coefficients. In the original paper [4],
indeed, it is shown, under certain simplifying assumptions, that the
eigenfunctions of R, (1) must satisfy a symmetry relation which is
the Laplace domain equivalent of (20) for 4 =0. Rather than mak-
ing unnecessary simplifying assumptions, we have chosen a dif-
ferent approach: since Property 3 (whose proof does not rely on
any supplementary assumption) asserts the existence of eigenfunc-
tions satisfying the symmetry relation (20), we developed our solu-
tion algorithm so that it give precisely these eigenfunctions.

We now describe the various steps in our solution algorithm
for equation (11):

(1) Determine the canonical factors D*(s) and D™ (s) of D(sz) as
follows,

D(H=D*(s)D(s),
D™ (s)=D*(-5),
D*(s) has only left-half-plane zeros.
(2) Find the K, distinct roots s14(A), =1,....K,, of the polynomial
AD (s2)--N (s%) and let m,; denote their respective multiplicities.
Similarly, find the K, distinct roots s2,(A), k=1,....K3, of the poly-
nomial AD (s2)~2N (s%) and let my, denote their respective multi-
plicities. Observe that the zero configurations of both these
polynomials are symmetric about the real axis and the jo-axis.
(3) Define the functions
g1(5)=€e*D* () P()~Q(s), @
225,8)=Q(s) +ee” T Q(-9), @3)

where € =+1 and where P(s) and Q(s) are yet undetermined real
coeficient polynomials of degrees n—1 and 2m —1, respectively,
ie.,

@n

P(s)=po+pts+ -+ +ppys™! (24)

O =qo+q1s+ " +q25™ (25)

(4) Consider the following system of 4n complex linear equations
in the 3a real unknown coefficients pg.,....py—1.40 - - - 5@ 241~

e W) =0, 1=0,..my~l, k=1,.K,, 26)

P28 =0, 1=0,..my~1, k=1,.,K;, (27

where the superscript (/) denotes the /[ derivative with respect to
5.

(5)Using the symmetries present in the zero configurations {s1,(A)}
and {s5,(A}} and in the functions g,(s) and g,(s,€), transform this
system into an equivalent system consisting of 3 real linear equa-
tions in the unknown po,...,d2,-1. Let this new system be
represented by the matrix equation

AQBX=0
where A (A,£) is a 3nx3n real matrix and X = [po, ... ,g2.-117.

(6) Find the roots (A;,€;), with 0<A; <y and g; =1, of the equa-
tion

(28)

detA(A€)=0. (29)
The A; so obtained are the eigenvalues of equation (11) and the €;
are the symmetry indices of the corresponding eigenfunctions.
(7) For each pair (A;,€;), determine the solution space of the equa-
tion

A O.,‘,E,') X=0. (30)
For simplicity, assume that the solution space has dimension one
(the general case nceds only minor modifications) and let

X;={po.--.q2a-1,)" be an arbitrary non-zero element of the
solution space.
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(8) Let

Pils)=poi+ "+ +Pa-ris™ (}))
Qi) =qoi+ "+ +qzu1i8™ 7 (32)

Then, we have

K D*(s)Ps)e*¢
o ¢ k§1 RCS[W.S w@A)l,  ~d<t <0(33)
vilt)=y g, PR
¢; Y, Res| Qis)e su(hi)),  O<t<T—d

& MDEH-2NGYH
where c; is a (yet undetermined) coefficient and where the notation
Res[f (s),50] is used to denote the residue of the function f (s) at
one of its pole sg. For T—d <¢ < T, y;(#) can be obtained from (33)
by making use of the symmetry relation (20).

(9) In order to determine c;, simply substitute the above expres-
sions for y;(r) into (12) and perform the appropriate integration.
This completes the algorithm.

V. COMPUTER SIMULATIONS

In this Section, computer simulations are used to study the
comparative performance of EML and AML for a low-pass first
order PSD G,(w). Our principal objective here is not to provide
the reader with an exhaustive study, but rather to show that in some
particular cases where the condition T » T, +dya is violated,
EML can outperform AML in a significant way. Accordingly, only
a few values of the parameters of interest, i.e, bandwidth, delay and
signal-to-noise ratio, are considered. We begin by briefly describ-
ing the simulations and then follow with a discussion of the results.

The signal a (#) was modeled as a first order stationary Mar-
kov process with autocorrelation

R,m=Pe ", Pa>0, (34)
and corresponding PSD
Gi(@) = Z“P o (35)
o+ o

P is the mean square value of the signal a(¢) and o is the inverse of
its correlation time, simply defined as the 1/e point of R, (7). o also
gives the -3dB point of G,(®), so we refer to the quantity aT as the
time bandwidth product. Furthermore, it is convenient to define
the signal-to-noise ratio (SNR) as the total signal energy per chan-
nel divided by the noise power level, i.e.,
__PT
)

(36)

= The EML estimate dgy was obtained By maximizing the
log-likelihood function (7) over a restricted set of delay values.
The processor of Figure 1, with N =30, was used to compute the
data dependent term [;(x;d) in (7). The bias term l5(d) was
precomputed. For the search of the maximum, a grid of 21 equally
spaced delay values centered at d” was used, i.e.,

d=kT,, ke (k'-10,..k"+10). an

Here, T, is the sampling interval of the grid and k* =d"/T, is the
true value of the delay parameter in samples. For the simulations
considered, the choice T, = 1/(100)) provided sufficient resolution in
the delay estimate. After the value of 4 maximizing the log-
likelihood function had been found, a three point quadratic interpo-
lation formula was used to determine dpmy .

Similarly, the AML estimate d AML Was obtained by maxim-
izing the asymptotic log-likelihood function

no 2 2Gq(w) 2 _2%;i
Losd)= 3 B oG @y rNoz T =T OB
T
Xi=[1,e0%] 1 [x@ye ™ ar, 39

2T 5

over the grid (37) and by applying the same interpolation formula
as above. In order to make our comparison of EML and AML
meaningful we chose M =3aT/2 as the upper limit of summation
in (38).



For the simulation, the following parameter values were used:
al =4,
SNR = 125, 500, (40)
£*=0,4,8,12, 16.

For each choice of & and SNR, 256 independent experiments were
run, and at the end, the various performance indicators were com-
puted for both EML and AML. The indicators considered were the
bias, the standard deviation, and the number of delay estimates fal-
ling on the boundaries (k"+ 10)T,. They are represented here by p,
o, and 1, respectively. o was used as a measure of small errors
while | was used as a very crude measure of large emors. The
results of these simulations are presented in Table 1, 2 and 3.

True Bias (samples)

delay
£ SNR=125 SNR=500

(samples) (| Bamr [ Bame || Brwr | Pamw

0 0.00 | -0.03 [ -0.03 | -0.04
4 000 | -0.53 0.00 | -049
8 0.08 | -0.94 0.04 | -0.89
12 0.13 | -1.68 0.06 | -1.77
16 022 | -1.3t1 004 | -1.09

Table 1. Comparison of bias for EML and AML

True Standard deviation (samples)

delay
'S SNR=125 SNR=500

(samples) | Ogm | CamL || Oamr | Oamw

0 1.15 131 033 1.03
4 0.81 1.75 0.33 1.39
8 0.84 2.84 036 225
12 145 4.73 0.48 451
16 1.88 542 0.84 542

Table 2. Comparison of standard deviation for EML and AML

True Number of boundary estimates

del?y
k SNR=125 SNR=500

(samples) || Nemr, | Name || Memr | Nt

0 0 1 0 1
4 0 3 0 2
8 0 5 [o] 2
12 2 29 0 27
16 4 43 1 42

Table 3. Comparison of ngy; and NaML

True Improvement factor
delay IMP (bB)
kt
(samples) | SNR=125 || SNR=500
0 1.1 9.9
4 6.7 12.5
8 10.6 15.9

Table 4. Improvement factor

From table 1, we observe that the EML estimate is practically
unbiased. This property is not shared by the AML estimate. Indeed,
AML immduges a negative bias which generally increases in mag-
nitude with £°. Moreover, the magnitude of this bias seems to be
independent of the SNR.

We now consider Table 2. Qur first observation is that for a
fixed value of k*, both Ogyg. and oy decrease as the SNR
increases. However, this effect is much less pronounced for AML
than it is for EML. Second, we note that both ogyy and CamL
increase with &* (the only exception to this rule being with Gy
for SNR=125 and &°=4,8). This result is understandable since, as
k" increases, the edge effects become more important and only a
smaller portion of the signal x;(s) and x»(f) can be processed
coherently. In order to compare Opyy, With Gamr, we define an
improvement factor as follows,

OAML
CeML :
Computed values of IMP for k"=0,4,8 have been collected
together in Table 4. We note that for the simulation experiments
considered, IMP is always positive and is an increasing function of
both £* and the SNR. As seen from the table, significant perfor-
mance improvements can be obtained by using EML instead of
AML. Finally, it is imponant o r.loﬁce the large incregse in oamy
that occurs between & =8 and k" =12, In fact, for £*>12, OaML
comes very close to the limiting value of 5.77, which is the stan-
dard deviation for delay estimates uniformly distributed in the win-
dow {k'~10,k™+10). Hence, for k* larger than 8 (this represents
20% of the total observation time), AML is unreliable and should
not be used, at least for the particular PSD considered in these
simulations,

The fact that AML becomes unreliable somewhere between
k*=8 and k*=12 is also confirmed by the results of Table 3. As can
be seen from this Table, Ny, increases from a few units at £*=8
to around 30 at k*=12. What is even worst for the AML estimate is
that this threshold effect does not seem to disappear as the SNR
increases. In the case of EML, however, no such undesirable thres-
hold effects occur.

IMP =20log

@n

VI. CONCLUSIONS
The main results of this work are summarized below:

(a) A new processor configuration was obtained for the problem of
ML TDE over arbitrary observation time. This configuration con-
sists of a finite time beamformer followed by a scalar post-
processor whose implementation requires the knowledge of the
eigenvalues and eigenfunctions of a certain integral equation.

(b) An explicit operational solution algorithm for this integral
equation that applies to stationary signals with rational PSD's was
developed.

(c) Computer simulations were used to compare the performances
of EML and AML in a few particular cases. They show that EML
can lead to a significant improvement in the performances (bias,
variance, large errors) when the condition T3> T, +dn. is not
satisfied.
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