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ABSTRACT

In this work, we derive new algorithms for tracking the
eigenvalue decomposition (EVD) of a time-varying data co-
variance matrix. These algorithms have parallel structures,
low operation counts and good convergence behavior. Their
main feature is the use of Givens rotations to update the
eigenvector estimates. As a result, orthonormality of the
latter can be maintained at all time, which is critical in the
application of certain signal-subspace methods. The com-
parative performance of the new algorithms is illustrated
by means of computer experiments.

1. INTRODUCTION

In a recent paper [1], new EVD tracking algorithms were de-
veloped using a first-order perturbation approach. These al-
gorithms exhibit attractive computational and convergence
properties, but they suffer from a limitation common to
many EVD tracking algorithms, namely: they do not pro-
duce perfectly orthonormal eigenvectors. In some applica-
tions, this is not important; m others, further orthonor-
malization of the eigenvectors is necessary, which requires
additional computations. Clearly, it is desirable to avoid
this step by directly producing orthonormal eigenvectors.

In this work, we derive new EVD tracking algorithms
which do not suffer from this limitation. A constrained lin-
earization approach is first used to obtain an approximate
solution to the updated EVD resulting from a small rank-
one modification. It consists of representing the updated
eigenvectors, constrained to be orthonormal, in terms of
(small) unconstrained parameters and to evaluate the latter
by performing a linearization within the parameter space.
This parametric representation is then exploited to derive
several new, computationally efficient EVD tracking algo-
rithms. Their main feature is the use of Givens rotations to
update the eigenvector estimates, so that the constraint of
orthonormality can be satisfied at all time. The statistical
convergence and numerical stability of the new algorithms
are investigated by computer experiments.

2. THE EVD TRACKING PROBLEM

2.1. Formulation

Let x(k) € C* be an L-dimensional complex data vector ob-
served at discrete-time k. The sequence x(k) is modeled as
a zero-mean, random vector process with covariance matrix

R(k) = B[x(k)x(k)"]. 4]
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The eigenvalues and corresponding orthonormalized eigen-
vectors of R(k) are denoted by Ai(k) and qi(k), i =1,..., L,
respectively. That is, the matrices

A(k) = diag(A1(k), ..., AL(K)), (2)
Q(k) = [ai(k), - aL(®)], ®3)
satisfy
R(k) = Q(k)A(R)Q(R)™, (4)
QK Q(k) = L. (5)

Without loss of generality, it is convenient to assume that
AL(k) > Ao(k) > ... > Asn(k) > 0.

The problem of EVD tracking is to perform on-line es-
timation of the time-varying EVD parameters of the data
covariance matrix R(k) in (1). More specifically, it is de-
sired to develop recursive relationships which can be used
to obtain estimates of the EVD at time k, i.e. estimates of
A(k) and Q(k) in (2)-(3), given estimates of A(k — 1) and
Q(k — 1) and the new data vector x(k). In certain applica-
tions, it is only required to track a subset of the EVD. Due
to lack of space, we only consider complete EVD update.
However, the new algorithms reported in this paper can be
modified appropriately.

Let

I'(k) = diag(v1(k), ..., vr.(k)), (6)
with 71 (k) > 72(k) > ... > vo(k) > 0, and

U(k) = [ui(k), ..., ur(k)], (7)

denote the desired estimates of A(k) and Q(k), respectively.
In this work, following [1], we shall seek estimates which
approximately satisfy

Uk)T(R)U(K)T = (1 — e)U(k — )I(k = DUk — 1)¥

+ex(k)x(k)™,

: . ®)
where 0 < € < 1 is a forgetting parameter used to de-
emphasize the effect of past observations. In addition to
this, we shall require that

Uk) U (k) = I, 9)

exactly. Enforcing the constraint (9) at all time will ensure
that the estimated eigenvectors are orthonormal.

Before proceeding with the derivations of new EVD
trackers, we need to recast the EVD update problem (8)
in a normalized form which will simplify our work.
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2.2. Preprocessing
To simplify the notations, let
U=sUk-1), IT=T(k-1), x=x(k), (10)
denote the information available at time k and let
U'=U(k), I'=T(k), (11)
denote the updated EVD estimates. Preprocessing consists
of four steps. After the ith step (1 =1,...,4), we have
UTUY = UJ(1 - )T + £ £FUE, (12)

where U;, T'; and €; are defined so that the problem is grad-
ually simplified [2]. A description of these steps follows.

1. Diagonalization: Transform (8) into the rank-one EVD
update of a diagonal matrix. To this end, let

& =U%%, Uy=U T,=T. (13)
2. Mapping into real vector space: Map &, € C* into

€&, € R" so that the updating problem only involves
real quantities. To this end, define

D = diag(&1,:/€1,4)s (14)
where £;; denotes the ith entry of £;, and let
£2=DH£1, U2 :—’UlD, F;:Fl. (15)

3. Deflation: Reduce the dimensionality of the prob-
lem whenever some of the diagonal elements of I'2
are repeated. Specifically, suppose that the num-
ber of distinct eigenvalues is K < L. Then, by us-
ing an appropriate block Householder matrix H =
diag(H\, ..., Hk) [2], it is possible to zero out L — K
entries of the vector £, without affecting I'>. Thus,

63 =HTE2: U3=U2HY I‘s =P2‘ (16)

4. Reordering: Using a permutation matrix P (see [3]),

reorder £;, Us and T's via

{4 = PITE:«S’

so that the last L — K entries of £, are zero and the
first K diagonal entries of I's are in decreasing order.

U4=U3P1, F4=P1T1—‘3Pl) (17)

These steps are summarized in Table 1.

3. CONSTRAINED LINEARIZATION

In the sequel, let £, U and I' stand for &,, Us and T4,
respectively. Then, we have

fT = [ 550]7
where €, = [¢1, ..., €x]T with & >0, Ty = diag(v1, ...y YK)

with v1 > v2 > ... > vk > 0, Il = diag(vkx41,.-, VL)
Substituting (18) into (12), we obtain

T = diag(Tu, 1), (18)

rtppr H O (l—e)I’..—i—egu{f 0 H
UTU'" =U . a—on [U

(19)

[ Step | Operation ]
1 £ =U"%

2 | D=dag(&/l&D)

£+ DH¢

U« UD

3 H = block Householder matrx
¢ HT¢

U« UH

4 P, = permutation matrix

£+ Pl

U+~ UP]

I « PIT'P,

Table 1: Summary of preprocessing steps.

Hence, the original EVD update problem (8) over CX** has
been reduced to the rank-one EVD update of a diagonal
matrix over R¥*¥ je.:

VILVT = (1— €)ly +€€,£7, (20)

where T'}, is diagonal and
VTV = Ik, (21)
Once V and I',, are known, I’ and U’ can be obtained from

r_ 14 0 [ T 0
U_U[O IL—K]’ F"[ 0 (1-—e)I‘z]' (22)

Below, a constrained linearization approach is used to de-
rive an approximate solution to (20) which satisfies (21)
exactly.

The following observations are at the basis of our deriva-
tion: (1) in most applications of EVD tracking, the memory
parameter ¢ is small; (2) for e sufficiently small, the modi-
fied EVD components I';, and V in (20) can be analytically
connected to I'y, and Ik, respectively, so that I',' — T, and
V — Ik in the limit ¢ — 0 (see [1]). Hence, we conclude
that in most applications of EVD tracking, the EVD mod-
ifications resulting from the update (20) are small, that is,
IT% = Tullz € ITull2 and ||V — Ix|l2 < 1.

To emphasize this point, let us write I'}, in the form

I, =T, + AT, (23)

AT, = diag(és,...,0k), (24)
where §; (i = 1,..., K) represents the modification in the
ith eigenvalue. According to the above discussion, |6i] < 71
provided ¢ is sufficiently small.

The introduction of a similar representation for V in
terms of small parameters requires additional care because
of the orthogonality constraint (21). To derive such a repre-
sentation, we first note that det(V') = £1 as a consequence
of (21). Without loss of generality, we shall assume that
det(V) = +1. This amounts to multiplying one of the mod-
ified eigenvectors by —1. With this additional restriction, V'
now belongs to the group of K x K unimodular orthogonal
matrices and can thus be expressed in the form [4]

V = exp(0), (25)

where © = [0;;] is a skew-symmetric matrix in R ¥ (i.e.,
©T = —0, or equivalently, 0;; = —6:5), and exp(.) is the
matrix exponential function, defined as

exp(@) = LR, 0% /k! (26)
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This parametrization of V in terms of K(K — 1)/2 real
parameters is of particular interest to us. Indeed, provided
¢ is sufficiently small, we have ||V — Ix|2 < 1, which in
terms of (25), implies |6;;] < 1.

The constrained linearization approach that we propose
can now be stated as follows: substitute (23) and (25) into
(20); perform the necessary expansions and retain only lin-
ear terms in Al'y, and ©; solve for A"y, and ©; substitute
the solutions back into (23) and (25); The results can be
summarized as follows:

T, = (1— €)'y + ediag(é?, ..., £%), (27)
while V' is given by (25) with
bi; =e&ii/(vi— ), 1<i<j<K. (28)

The other entries of © are obtained from skew-symmetry.
The matrices I'y, and V as given above are the desired solu-
tions to the simplified EVD update problem (20). Because
of the parametrization (25), the orthonormality constraint
(21) is automatically satisfied.

4. EVD UPDATE BASED ON GIVENS
ROTATION SEQUENCES

In this section, the assumption ||©]]2 < 1 is further ex-
ploited to derive several (approximate) decompositions of
the matrix V' (25) as a product of Givens (or plane) rota-
tions. When used in connection with (22), each decomposi-
tion leads to a computationally efficient algorithm for EVD
update. These decompositions, along with the correspond-
ing algorithms, are derived in the following subsections. We
use the acronyms PROTEUS-: to identify these algorithms,
where PROTEUS stands for “plane rotation-based EVD
update scheme”, and the index 1 € {1, 2,3}.

4.1. PROTEUS-1

Let ¥;; (: < j) denote the matrix obtained from © by
setting all its entries to zero, except for the 7 and ji-entries
(i-e., 6i; and 85 = —8;;), which are left unchanged. It is
then possible to express © in terms of the matrices ¥;; as

0 =%,5:7;. (29)

Substituting (29) in (25) and using the definition (26) of
the exponential matrix function, it can be shown that

V = Il;5; exp(Ti5) + O(e?). (30)

Thus, V can be expressed as a finite product of simpler
orthogonal matrices, namely exp(¥;;), plus a matrix error
term of the order of €2. For small values of ¢, which is the
situation of interest in this work, it is reasonable to neglect
this term. Now consider the matrix exp(¥;;), which is the
basic building block in (30). Using the definition (26) of
the matrix exponential function, one can verify that

exp(¥ij) = Gi;(8:5), (31)

where Gi;(8) € RE*¥ is the well known Givens rotation
matrix [3]. Substituting (31) in (30) and neglecting the
second degree error term, we obtam a first decomposition
of the matrix V" (25), namely:

Wi = 115iGij(645), (32)

where the rotation parameters 6;; are given by (28). This
result simply states that for ¢ small, V can be expressed as

[ Step | Operation ]
1 | € ek
2 fore=1:K-1
forj=:14+1: K
0« & /(v; — %)
U « UG;;(6)
end
end
3 | T« (1—-¢)T +diag(&f)

Table 2: PROTEUS-1 algorithm.

the product of K (K — 1)/2 small Givens rotation matrices
with angles 8;; (28).

Based on the above decomposition of V', we can now
formulate a complete EVD update algorithm. To this end,
we first replace V' in (22) by the decomposition Vi (32). We
then rewrite the first equation in (22) in the form

U' = U 0U;5:Gij(8i5), (33)

where Gi;j(8;;) now represents a Givens rotation in RL*%.
For the eigenvalue update, we use (27) in connection with
(22). The resulting algorithm is presented in Table 2, where
the initial values of ¢, I' and U are those obtained after pre-
processing (Table 1). For real data, this algorithm requires

3LK? + O(K?) flops.

4.2. PROTEUS-2

In this subsection, we derive a simpler algorithm with an
O(LK) operation count. The starting point of our deriva-
tion is a block representation for the matrix © = [6i;]x xx,
with entries given by (28). Let ©x(1,...,&x) denote the
principal submatrix of © corresponding to its first & rows
and first k& columns. Then, we have

© =0k (&, ..., ¢K)

Ox-2(£1,...,€xk~2) —€fxk-_1a —efkxb (34)

= eéx_1a’ 0 Or—1,K
e&xb” —0Kx_1,K 0
where
a=(a,....,ax-2)", ai=¢&/(%—vK-1) (35)

b= (bla"-va“2)Tv b; = Ei/("/i '—'7K)’ (36)
Our second EVD update algorithm is based on the assump-
tion a; = b; & &:/v:;. Under this condition, the transforma-
tion @ - A% _1©Ak_1, where Ax—1 = Gg—1,x() with
a properly defined, can be used to zero out the first K — 2
entries in the last row and column of ©. Using additional
properties of Givens rotations and of the exponential matrix
function, along with mathematical induction, the following
decomposition of V' (25) can be obtained:

Vi = Bi—1..B2CAY .. AL _,, (37)

Ai = Giipi{ou), Bi=Giip1(B8:i), C=Gi12(6:1), (38)

where a;, B and 8, are appropriately defined parameters.
The corresponding EVD update algorithm is summarized
in Table 3. Its operation count is 12LK + O(K) flops. In
practice, this algorithm is robust and can be used even when
the underlying assumptions do not hold.
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[ Step [ Operation ]

1T [ €« ek
2 f}( — &K
fori=K—-1:-1:2

a;i ¢ —arctan(&ly1/&)

0« &i&ly1/(vitr = 7)
§ /(€T
U+ UGiit1(ai +9)
end
8 & &1&/(v2 —m)
U« UG12(8)
fori=2:K—1
U« UGT i (ai)
end
3 T « (1 —e)I + diag(&))

Table 3: PROTEUS-2 algorithm.

[Step | Operation ]
1 [&e /el
2 fori=1:K -1
for j=4¢4+1:min(i +1,K)
6« &&i/(7 — )
U« UGi;(8)
end
end
3 T « (1—€)T + diag(¢?)

Table 4: PROTEUS-3! algorithm.

4.3. PROTEUS-3

In this subsection, we derive yet another type of EVD up-
date algorithms with an O(ILK') operation count, where [
is a user selectable integer parameter. Consider again the
matrix © = [0;;]x xx, with entries given by (28). We have
observed experimentally that the magnitude of 6;; gener-
ally decreases (although not necessarily monotonically) as
|7 — ¢| increases, i.e., as we move away from the main diag-
onal of ©. This suggests that a simple approximation for
the matrix © can be obtained by retaining only the first [
diagonals of © above and below the main diagonal and by
setting all the other entries to zero. Here, [ is a fixed, small
integer (typically 1 or 2). Using this idea in connection with
(32), we obtain a third decomposition of V, namely:

¢ —1ppmin(i4l,k
Vau = T T G (645). (39)
The corresponding EVD update algorithm is summarized
in Table 4. Note that for I = K, this algorithm is identical
to the PROTEUS-1 algorithm. Clearly, significant com-
putational gains are achieved with the algorithm in Table

4 only when ! « K, in which case its operation count is
6lLK + O(K) flops.

5. COMPUTER EXPERIMENTS

We consider a uniform linear array of L = 10 sensors with
half-wavelength spacing. The wavefield consists of K — 1
Gaussian narrow-band plane wave signals in white noise.
The DOAs of the sources are 0°, 5°, 20° and 25° (w.r.t.
broadside) and the corresponding SNRs are 20, 20, 10 and
10dB. The new algorithms, as well as a brute force approach
involving exact EVD of a recursive, exponentially weighted

(a) () ()

] 50 100 150 200 250 300 350 400 450 500
time sample

Figure 1: Distance between estimated and true signal-
subspace: (a) exact EVD, (b) PROTEUS-1, (¢) PROTEUS-2,
(d) PROTEUS-3 with | = 1, (¢) PROTEUS-3 with | = 2.

10"

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
time samplo

Figure 2: Orthonormality of signal-subspace eigenvectors: (a)-
(e) as above, (f) machine accuracy.

covariance matrix estimate, are applied to the data. In all
cases, € = 0.98. Fig. 1 shows the distance between the es-
timated and true signal subspace as a function of k for the
various methods (20 run average). Results indicate that the
new algorithms PROTEUS-1 and 2 can achieve the same
level of performance as the much more costly “exact ap-
proach”. Fig. 2 shows the quantity |[Us(k)FUs(k) — L2
versus k for a single run, where U,(k) contains the esti-
mated signal-subspace eigenvectors. Theses results indi-
cate PROTEUS-1 and 2 are very effective in preserving the
orthogonality of the estimated eigenvectors in finite preci-
sion arithmetic; the performance of PROTEUS-3 can be
improved by using known numerical stabilization mecha-
nisms.
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