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Abstract—This work studies the joint problem of optimal
content placement, RRH clustering and beamformer design, in a
cache-enabled cloud-radio access network (C-RAN). In the con-
sidered system, multiple remote radio heads (RRHs) connected
to a centralized baseband unit (BBU) pool via fronthaul links,
cooperatively serve the downlink users by grouping them into
potentially overlapping clusters. Each RRH is equipped with a
local cache from which it can directly acquire the requested user
contents, without the need to occupy the fronthaul links. We aim
to jointly optimize the caching placement, user association and
downlink beamforming vector at each RRH, in order to strike
a balance between fronthaul traffic reduction and transmission
power minimization. To this end, we propose to employ the ratio
between these two important system utilities as the objective
function, referred to as caching efficiency. A penalty dual
decomposition (PDD) based algorithm is presented to address
the resulting nonconvex optimization problem, which features
coupling constraints and mixed-integer variables. Simulation
results validate the efficiency of the proposed algorithm.

Index Terms—Transceiver design, cloud-RAN, content place-
ment, caching, RRH clustering, beamforming.

I. INTRODUCTION

With the increasing demands for high-speed data traffic,
especially content sharing and video streaming, wireless net-
work operators are now faced with striking challenges in
providing high throughput and low latency services to large
communities of mobile users. To meet these new requirements,
local caching of popular data at base stations (BSs) has
been recently proposed as a promising solution for massive
content delivery [1]–[6]. This approach essentially brings key
information contents closer to the users and in turn reduces
fronthaul utilization costs. Furthermore, as service providers
move favored contents to intermediate nodes in the network,
the access delay is reduced which improves the quality of
experience for users.

To support the ever growing data traffic and computational
demands of mobile users, another important technology is
the cloud radio access network (C-RAN), which refers to an
emerging network architecture that can improve the spectrum
and energy efficiency compared to existing wireless networks
[7]–[10]. In C-RAN, several low-cost low-power remote radio
heads (RRHs) are deployed to replace the traditional high-cost
BSs. Since most of the signal processing tasks are handled by
a centralized baseband unit (BBU) pool that connects to the
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RRHs via digital fronthaul links, joint data processing and
precoding are possible to improve system performance.1

In the literature, several works have investigated the joint
problem of user-centric BS clustering and cooperative beam-
forming under dynamic conditions [8], [9], [11], [12]. With
regard to fronthaul traffic reduction, this approach is attractive
since the popular data of each user only need to be assigned
to a small cluster of potentially overlapping BSs, instead of
all BSs. This content delivery service can be carried out by
carefully designing content placement such that the users can
seize various transmission opportunities and fully exploit the
caching gain [13]. The potential benefits of distributing and
storing popular contents across the whole network have been
investigated by many researchers [1], [5], [13]–[21]. In the
context of C-RAN, to further improve the delivery rate and
decrease backhaul/fronthaul costs and latency for mobile users,
a promising solution is to cache popular contents directly at
the RRHs [18].

While making significant advances, the aforementioned
studies do not approach the design of content placement,
RRH association and RRH transceiver by considering all
three aspects jointly. In this work hence, we study the joint
optimization of the content-aware C-RAN along these three
critical design dimensions, aiming to strike a more favorable
balance between fronthaul traffic reduction and transmission
power minimization. To this end, we propose to maximize the
ratio between the fronthaul traffic reduction and the total trans-
mission power, termed caching efficiency, subject to quality
of service (QoS), clustering and caching constraints. The joint
design problem is quite challenging and difficult to handle
due to the facts that the objective function and constraints are
nonconvex, the optimization variables are tightly coupled, and
the latter contain nontrivial discrete variables. By exploiting
the problem structure, taking advantage of the Dinkelbach
method [22] and embracing the penalty dual decomposition
(PDD) framework [23], we show that the joint design problem
can be solved by iterating over a sequence of simple and very
efficient updates in the individual design variables.

The rest of the paper is organized as follows. In Section II,
we present the system model of the content-aware C-RAN and
formulate the associated joint optimization problem. In Section
III, we develop the PDD-based algorithm for the solution

1Note that in the C-RAN context, the backhaul portion of the network
comprises the intermediate links between the core network and the BBU pool,
while the links between the BBUs and the RRHs at the edge of the network are
usually referred to as fronthaul links. In general, content caching at the RRHs
would save both backhaul and fronthaul costs. However, for conciseness, we
will only mention fronthaul in the following.
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of this problem and discuss its convergence. In Section IV,
we present simulation results to characterize the performance
of the proposed algorithm. Finally, conclusions are drawn in
Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first describe a content-aware C-RAN
system, wherein multiple RRHs serve mobile users by form-
ing potentially overlapping clusters. We then formulate the
joint optimization problem for the content placement, RRH
clustering and beamformer design.

A. System Model

We consider a content-ware C-RAN, which consists of N
multi-antenna RRHs, indexed by n ∈ N � {1, · · · , N}, K
single-antenna mobile users, indexed by k ∈ K � {1, · · · ,K},
and a centralized BBU pool. The RRHs, each equipped with a
common number L of antennas for simplicity, are individually
connected to the BBUs via high-speed fronthaul links. We
assume that the BBU pool has access to the information
contents that can be potentially requested by all the users,
and distributes each user’s content to an individually selected
cluster of RRHs via the fronthaul links. Each user is then
cooperatively served by the associated RRH cluster through
joint beamforming.

Let wk,n ∈ C
L×1 denote the dowlink beamforming vector

from RRH n to user k, and let wk = [wH
k,1,w

H
k,2, · · · ,wH

k,N ]H

denote the aggregate, network wide beamforming vector form
all RRHs to user k. The received signal at user k, at a given
instance of symbol transmission (or time slot), can then be
written as

yk = hH
k wkxk +

K∑
j �=k

hH
k wjxj + nk, (1)

where xk (xj) is the information symbol transmitted to user
k (j �= k) and nk represents an additive noise term. Modeling
these quantities as zero-mean, mutually independent random
variables, the signal-to-interference-plus-noise ratio (SINR) of
user k can be defined as

SINRk �
|hH

k wk|2
K∑

j �=k

|hH
k wj |2 + σ2

k

, (2)

Consequently, the achievable data rate of user k is given by
Rk = B log(1 + SINRk), where B denotes the total available
channel bandwidth.

Different from the conventional C-RAN systems, we here
assume that each RRH can cache a certain amount of content
objects within a local storage device. At regular time intervals,
referred to as transmission times, each user submits a content
request according to a certain probability distribution specific
to that user. If the requested content has already been cached
locally at a serving RRH, then this RRH can access the
content directly and transmit it to the user without the need for
fronthaul data transfer.2 It is assumed that enough time slots
are available within a transmission time interval to complete

2In a C-RAN without caching capabilities, the RRHs need to fetch the
requested content from the BBU pool via fronthaul links, and possibly from
the cloud content cache via backhaul links.

the content delivery to the users, prior to the next transmission
time. Without significant loss in generality, let us assume that
the complete set of available user contents is represented by
F binary files, indexed by f ∈ F = {1, 2, · · · , F}, each with
normalized size of unity. The local storage size of RRH n is
denoted as Yn ≤ F , which means that RRH n can cache Yn

content files at most. Let cf,n = 1 indicate that content f is
cached in RRH n and cf,n = 0 otherwise, with the constraint

that
∑F

f=1 cf,n ≤ Yn. Considering that a request for a content
file that is not locally cached leads to a fronthaul utilization of
one unit per serving RRH, the total fronthaul traffic reduction
of the cache-enabled C-RAN can be expressed as [20]

CB =

K∑
k=1

N∑
n=1

sk,n

F∑
f=1

Pk,f cf,n, (3)

where Pk,f denotes the probability that user k requests content
file f and sk,n is the user-RRH association indicator, where
sk,n = 1 means that RRH n belongs to the serving cluster for
user k and sk,n = 0 otherwise.. The cost of the transmission
of the requested contents by all of the users from their serving
RRHs can be assessed in terms of the total transmission power,
defined here as

CP =

K∑
k=1

N∑
n=1

‖wk,n‖2. (4)

In this work, we introduce a new objective function, termed
caching efficiency and defined as

C � CB/CP , (5)

which measures the amount of fronthaul traffic reduction that
can be achieved per unit of consumed transmission power.
The main motivation to employ the fronthaul efficieny as
the objective function in system design is based on the
observation that with increasing transmission power budget,
larger serving clusters can be formed for each user, which
further reduces the fronthaul utilization. Hence, the objective
function (5) is intuitively pleasing since it takes into account
the proportionality relationship between the available power
budget and the fronthaul reduction.

B. Problem Formulation

In this work, we aim to jointly optimize content placement,

RRH clustering and cooperative beamforming at each trans-

mission time interval, so as to maximize the caching efficiency,

which can be formulated as the following optimization prob-

lem:

max
{wk,n}, {sk,n}, {cf,n}

C (6a)

s.t. SINRk ≥ γk, ∀k, (6b)

sk,n = 0 or 1, ∀k, n, (6c)

K∑
k=1

sk,n ≤ Xn, ∀n, (6d)

(1− sk,n)wk,n = 0, ∀k, n, (6e)

cf,n = 0 or 1, ∀f, n,
F∑

f=1

cf,n ≤ Yn, ∀n. (6f)

The QoS constraint (6b) requires that the SINR of user k
should be no smaller than a given positive target threshold γk.
Constraint (6c) means that the values of the user association
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indices sk,n can only be 0 or 1. Constraint (6d) indicates that
the maximum number of users that RRH n can serve is limited
by Xn. Finally, constraint (6e) forces the beamforming vector
wk,n to be an all-zero vector if user k is not served by RRH n.
Note that problem (6) is highly nonconvex and features both
continuous and discrete variables which are coupled together
in (6e) due to the RRH clustering operation. Consequently,
problem (6) is quite challenging and it does not appear possible
to obtain a globally optimal solution.

III. PROPOSED PDD-BASED ALGORITHM

In this section, we present the detailed derivation of the pro-
posed PDD-based algorithm, which relies on the Dinkelbach
method [22]. The proposed algorithm exhibits a twin-loop
structure: the inner loop (approximately) solves the augmented
Lagrangian (AL) problem [24], [25], while the outer loop
updates the Dinkelbach variable, and the dual variables or
the penalty parameter, depending on a constraint violation
status. In the proposed iterative algorithm, we show that each
subproblem in the inner loop can be solved either in closed-
form or by the bisection method [26].

A. Reformulation of Problem (6)

By employing the Dinkelbach method, problem (6) can be
reformulated as

min
{wk,n}, {sk,n}, {cf,n}, ς

−CB + ςCP

s.t. (6b) − (6f).
(7)

The main motivation behind the use of the Dinkelbach variable
ς ∈ R is to decouple the fractional objective in (6) into a
subtractive form that can be tackled more easily. It can be
shown that there exists ς such that the optimal solution of (7)
corresponds to that of (6).

Next, we introduce auxiliary variables {ŝk,n} and

{wj
k}j∈K\{k} which satisfy

wj
k = wk, ∀j ∈ K\{k}, ∀k, (8)

sk,n = ŝk,n, ∀k, n. (9)

Note that (8) and (9) can be equivalently interpreted as
introducing K − 1 and 1 redundant copies of variables wk

and sk,n, respectively.3 Then, problem (7) can be equivalently
expressed as

min
W̄, ς

−CB + ςCP (10a)

s.t. (6d) − (6f), (8) and (9), (10b)

|hH
k wk|2

K∑
j �=k

|hH
k wk

j |2 + σ2
k

≥ γk, ∀k, (10c)

sk,n(1− ŝk,n) = 0, ∀k, n, (10d)

0 ≤ ŝk,n ≤ 1, ∀k, n, (10e)

where W̄ � {{wk}, {wj
k}j∈K\{k}, {sk,n}, {ŝk,n}, {cf,n}}.

The introduction of these auxiliary variables represents a
critical step in developing the proposed PDD-based algorithm.
Indeed, by adopting these new variables, we can partition

3The introduction of these redundant copies may seem, at first glance,
artificial. However, it will be clear later that with their help, the optimal
solutions of certain subproblems can be obtained in nearly closed-form and
consequently the corresponding, underlying problem (6) can be easily solved.
We emphasize that in contrast to sk,n which only takes on binary values, its
copy ŝk,n is a continuous variable.

the complete set of optimization variables into smaller non-
overlapping subsets, or blocks, that can be optimized sep-
arately. Specifically, the joint optimization problem (7) can
be decomposed into a number of subproblems which either
admit closed-form solutions or can be solved via simple iter-
ative approaches. Hence, through the introduction of auxiliary
variables and judiciously exploiting the block structure, low-
complexity algorithms can be devised for the optimization of
each block of variables.

B. Algorithm Design
In this subsection, we aim to develop an efficient PDD-

based algorithm to solve problem (10). To this end, the AL of
problem (10) is first formulated as

min
W̄, ς

−CB + ς
K∑

k=1

‖wk‖2 + Pρ

s.t. (6d), (6f), (10c) and (10e),

(11)

where the penalty term

Pρ � 1
2ρ

K∑
k=1

N∑
n=1

(
(sk,n(1− ŝk,n)

+ρλk,n)
2 + (sk,n − ŝk,n + ρλ̂k,n)

2
)

+ 1
2ρ

K∑
k=1

K∑
j=1,j �=k

‖wk −wj
k + ρμj,k‖2

+ 1
2ρ

K∑
k=1

N∑
n=1

‖(1− sk,n)Jnwk + ρξk,n‖2,

(12)

{λk,n}, {λ̂k,n}, {μj,k} and {ξk,n} denote the dual vari-
ables corresponding to the constraints (10d), (9), (8) and
(6e), respectively. Jn � [0L×(n−1)L, IL×L,0L×(N−n)L] ∈
{0, 1}L×NL is a binary selection matrix. The coefficient ρ > 0
is used to control the size of the penalty (i.e., decreasing ρ
increases the penalty).

Our proposed algorithm mainly consists of two embedded
loops. In the outer loop, indexed by positive integer m, we
update the Dinkelbach variable ςm and either the dual variables
{λm

k,n, λ̂
m
k,n,μ

m
j,k, ξ

m
k,n} or the penalty parameter ρm, where

the dependence of these variables on the outer iteration index
m is now made explicit. In the inner loop, we employ the block
successive upper-bound minimization (BSUM) method [27]
to iteratively optimize the primal variables W̄ over selected
blocks of variables while keeping the other variables fixed. In
the following, we first develop the BSUM method in details,
then present the update of the dual variables, the Dinkelbach
variable and the penalty parameter, and finally summarize the
overall algorithm.

In the inner loop, with fixed dual variables, penalty param-
eter and Dinkelbach variable, we propose to divide the primal
variables into four blocks that will be treated separately, i.e.,
{sk,n}, {ŝk,n}, {wk,w

j
k} and {cf,n}. We now proceed with

the optimization of each block.
1. Block {sk,n}: The optimization problem of {sk,n} can

be expressed as

min
{sk,n}

−
K∑

k=1

sk,n
F∑

f=1

Pk,f cf,n

+ 1
2ρm

K∑
k=1

‖(1− sk,n)Jnwk + ρmξmk,n‖2

+ 1
2ρm

K∑
k=1

(
(sk,n(1− ŝk,n) + ρmλm

k,n)
2 + (sk,n − ŝk,n + ρmλ̂m

k,n)
2
)

s.t.
N∑

k=1

sk,n ≤ Xn, ∀n.
(13)
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It can be seen that for each n, {sk,n}Kk=1 can be optimized
separately in a parallel manner. In addition, problem (13) is a
quadratic programming (QP) problem with linear constraint,
whose optimal solution can be obtained in closed-form by re-
sorting to its Lagrangian dual problem. The detailed derivation
is omitted here for brevity.

2. Block {wk,w
k
j }j∈K\{k}: The corresponding optimization

problem can be expressed as4

min
{wk,w

k
j }j �=k

ςm‖wk‖2 + 1
2ρm

N∑
n=1

‖(1− sk,n)Jnwk + ρmξmk,n‖2

+ 1
2ρm

K∑
j=1,j �=k

(
‖wk −wj

k + ρmμm
j,k‖2 + ‖wj

j −wk
j + ρmμm

k,j‖2
)

s.t.
|hH

k wk|2
K∑

j �=k
|hH

k
wk

j |2+σ2
k

≥ γk,

(14)

which can be efficiently solved by resorting to the Lagrangian
dual problem and employing the bisection method. The de-
tailed derivation is included in Appendix A.

3. Block {ŝk,n}: We consider the following problem:

min
ŝk,n

1
2ρm

(sk,n(1− ŝk,n) + ρmλm
k,n)

2

+ 1
2ρm

(sk,n − ŝk,n + ρmλ̂m
k,n)

2,

s.t. 0 ≤ ŝk,n ≤ 1.

(15)

Problem (15) is also a QP problem with linear constraint,
which therefore admits a closed-form solution.

4. Block {cf,n}: The optimization problem, which is sepa-
rable among different n, can be formulated as follows:

max
{cf,n}

F∑
f=1

κf,ncf,n

s.t. cf,n = 0 or 1, ∀f,
F∑

f=1
cf,n ≤ Yn,

(16)

where κf,n =
∑K

k=1 sk,nPk,f . In essence, the aim of problem
(16) is to determine which subset of Yn files should be cached
by RRH n. The optimal solution to such a problem is simply
to cache the Yn files that have the largest benefits, i.e.,

c
opt
f,n =

{
1, if f ∈ Kn

0, otherwise
(17)

where Kn � argmax
K̄⊂F,|K̄|=Yn

(∑
f∈K̄ κf,n

)
.

In the outer loop, the dual variables
{λm

k,n, λ̂
m
k,n, μ

m
j,k, ξ

m
k,n} can be updated by

λm+1
k,n = λm

k,n +
1

ρm
(sk,n(1− ŝk,n)), (18a)

λ̂m+1
k,n = λ̂m

k,n +
1

ρm
(sk,n − ŝk,n), (18b)

μm+1
j,k = μm

j,k +
1

ρm
(wk −wj

k), (18c)

ξm+1
k,n = ξmk,n +

1

ρm
((1− sk,n)Jnwk). (18d)

The Dinkelbach variable and the penalty parameter can be
updated as follows:

ςm+1 = Cm
B /Cm

P , (19)

ρm+1 = qρm, (20)

4Due to the additive nature of the AL, we only need to consider a single
value of k at a time, i.e., optimization for other values of k can be done
separately in parallel.

where q < 1 is a control parameter used to increase the value
of the penalty term Pρ in (12) during each outer iteration.

Besides, we denote the maximum constraint violation
among all the equality constraints in problem (10) as �,
whose formal definition appears in (21) at the top of the next
page. This is an important quantity that can be employed to
determine if the proposed algorithm converges, and whether
we should update the dual variables or increase the penalty
parameter.

The main steps of the proposed PDD-based algorithm
are summarized in Algorithm 1. We observe that the com-
plexity for solving problem (13), (15) and (16) is al-
most negligible compared with that of solving problem
(14). Therefore, the overall complexity can be expressed
as5 O (

MmaximaxN3L3K4 log2
(
λmax−λmin

ε

))
, where λmax =

max{λk}k∈K and λmin = min{λk}k∈K denote the upper and
lower bounds of the corresponding dual variables as detailed
in Appendix A and ε denotes the precision of the bisection
method.

Algorithm 1 The Proposed PDD-based Algorithm

1: Initialize {wj
k}0, {cf,n}0, {sk,n}0 = {ŝk,n}0, η0, 	0, q and ς0.

2: Set the outer iteration index m = 0.
3: repeat
4: Set the inner iteration index i = 0.
5: repeat
6: Update {wk,w

k
j }i+1

j �=k by solving problem (14).

7: Update {ŝk,n}i+1 by solving problem (15).
8: Update {cf,n}i+1 by (17).
9: Update {sk,n}i+1 by solving problem (13).

10: i ← i+ 1.
11: until some convergence condition is met.
12: Assign W̄i to W̄0. Calculate 
 via (21).
13: If 
 ≤ ηm, update the dual variables via (18), otherwise set ρm+1 =

qρm. Set 	m+1 = q	m, ηm+1 = 	
1/6
m+1, update the Dinkelbach

parameter via (19) and m ← m+ 1.
14: until some convergence condition is met.

Remark 1: A complete characterization of the convergence
properties of Algorithm 1 is rather involved and falls outside
the scope of the present work, where the focus is on algo-
rithm design and performance study. Nevertheless, as a future
research direction, we here provide a schematic outline of the
various steps involved in the convergence proof of Algorithm
1. Firstly, we should prove that the caching efficiency sequence
obtained by the successive iterations are non-decreasing after
a finite number of iterations due to the property of the
Dinkelbach and the PDD methods. Then, resorting to the
convergence of the subsequence and the optimality condition
of the Dinkelbach subproblem, we could show that the limit
points of the subsequence are stationary points of the Dinkel-
bach subproblem. Subsequently, depending on the convergence
of the caching efficiency sequence, we could infer that the
convergent point of the Dinkelbach variable ς is actually equal
to the caching efficiency value evaluated at the limit point
of the subsequence. Finally, we would show that the limit

5It is worth noting that the main component that constitutes the com-
plexity of Algorithm 1 is performing the eigenvalue decomposition of a
KNL×KNL matrix multiple times. For general matrices, the computational
complexity would be O(K3N3L3). However, since Ak and Dk (which are
defined in Appendix A) are sparse matrices, the corresponding complexity
can be significantly reduced by further exploiting the special structure of Ak

and Dk , which we do not detail in this work.
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 = max
∀k,j,n

{
|sk,n(1− ŝk,n)|, |sk,n − ŝk,n|, ‖wk −wj

k‖∞, ‖(1− sk,n)Jnwk‖∞
}

(21)

points of the subsequence are stationary points of the original
problem (6) on the basis of the first order optimality conditions
of the Dinkelbach subproblem and the convergence property
of the Dinkelbach variable ς .

IV. SIMULATION RESULTS

In this section, the performance of the proposed PDD-
based algorithm is evaluated numerically. The following sys-
tem parameter values are used throughout unless otherwise
specified: N = 7, K = 6, L = 2, F = 700 and
σ2
k = −70 dBm, ∀k. Each RRH is located at the center of

an hexagonal cell, with the distance between adjacent RRHs
set to 100 meters. The users are uniformly and independently
distributed within the service area of the RRHs. We consider
Rayleigh fading channels with large-scale pathloss (in dB)
modeled as −147.3 − 43.3log10D, where the propagation
distance D is measured in kilometers. For simplicity, we
assume that all users have the same SINR requirements, and
that each RRH has the same local storage size and can
support the same number of users, i.e.: γk = γ, ∀k ∈ K,
Xn = X = 3, Yn = Y, ∀n ∈ N . In Algorithm 1, we
use the following parameter values: Mmax = 500, imax = 20,
η0 = 100, �0 = 100, q = 0.95 and ς0 = 1. The simulations
are done on a computer with Intel (i7-6700HQ) CPU running
at 2.60GHz and 8GB RAM.
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Fig. 1. Maximum constraint violation and objective value versus outer
iteration number for 3 problem instances.
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Fig. 2. Average normalized caching efficiency versus the SINR target
threshold of each user and the local storage size of each RRH.

In the simulations, we assume that the popularity of the
files can be measured based on the number and behavior of
the requests. Specifically, two types of files can be requested,
both with similar Zipf distribution with parameter 0.4 [20].
Also, two types of users with different file preferences are
considered, i.e.: Type 1 users prefer Type 1 files with proba-
bility 0.8 and Type 2 files with probability 0.2; Type 2 users
prefer Type 2 files with probability 0.8 and Type 1 files with
probability 0.2.

In Fig. 1, we investigate the typical convergence behavior
of Algorithm 1 in the case Y = 100 and γ = 6dB. The results
show that the proposed PDD-based algorithm converges in
a few hundreds of outer iterations. In Fig. 2, we examine
the average normalized caching efficiency as a function of
the SINR target threshold γ (with Y = 100) and the local
storage size Y with γ = 5dB fixed. For comparison, we also
provide the performance of an algorithm based on the penalty
concave-convex procedure (P-CCCP), a separate PDD-based
algorithm and a heuristic method. The P-CCCP algorithm
aims to solve problem (6) but is obtained by introducing
suitable auxiliary variables and penalizing certain constraints
to the objective function, while in the separate PDD-based
algorithm, the fronthaul traffic reduction and total transmission
power are separately optimized. In the heuristic method, the
RRH clustering is simply determined based on the distances
between the RRHs and users. As can be seen from Fig.
2, the performance of the proposed PDD-based algorithm
is very close to that of the P-CCCP algorithm, and they
both outperform the heuristic method and the separate PDD-
based algorithm in terms of cache efficiency. The achieved
caching efficiency is in inverse proportion to the SINR target
γ of each user. This is because as γ increases, the RRHs
need to increase their transmission power to satisfy the more
stringent SINR requirements, while the fronthaul reduction
barely changes with different γ. Besides, as the SINR target
γ decreases, the achieved caching efficiency of the separate
PDD-based algorithm becomes comparable to that of the joint
design algorithm, mainly due to the fact that in this case the
transmission power is not the dominant factor in achieving
high caching efficiency. Also, with the increase of the local
storage size in each RRH, more fronthaul reduction can be
achieved, which results into higher caching efficiency.

V. CONCLUSIONS

In this work, we have studied the problem of joint
transceiver design for a content-aware C-RAN system. An
optimization framework was presented in which the ratio
between fronthaul reduction and transmission power cost (i.e.
caching efficiency) was employed as the objective function. A
new design algorithm which utilizes the PDD framework was
proposed to jointly optimize the RRH downlink beamform-
ing vectors, the RRH clustering and the caching placement.
Simulation results were presented, showing that the proposed
algorithm exhibits very good performance.

APPENDIX A
SOLUTION OF PROBLEM (14)

We first introduce the following auxiliary variables:
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xk =
[
(wk

1 )
H , · · · , (wk

k)
H , · · · , (wk

K)H
]H

, (22)

Pk = [0NL×(k−1)NL, INL×NL,0NL×(K−k)NL] ∈ {0, 1}NL×KNL,
(23)

such that Pjxk = wk
j holds. We then observe that problem

(14) can be equivalently formulated as follows:
min
xk

xH
k Akxk + xH

k bk + ckxk

s.t. xH
k Dkxk ≥ σ2

k,
(24)

where
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)
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+ 1
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H
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PH
j hkh

H
k Pj . (28)

Since Ak is a full-rank matrix, we can decompose it as Ak =

A
1
2

kA
1
2

k . Furthermore, by introducing the substitution yk =

A
1
2

k xk, problem (24) can be rewritten as

min
yk

yH
k yk + yH

k A
− 1

2
k bk + ckA

− 1
2

k yk

s.t. yH
k A

− 1
2

k DkA
− 1

2
k yk ≥ σ2

k.

(29)

Next, we focus on the optimal solution of problem (29). Its
Lagrange function can be expressed as

L = yH
k yk+yH

k A
− 1

2
k bk+ckA

− 1
2

k yk+λk

(
σ2
k−yH

k A
− 1

2
k DkA

− 1
2

k yk

)
,

(30)

where λk denotes the dual variable. Employing the eigenvalue

decomposition, we can write A
− 1

2

k DkA
− 1

2

k = VSV−1, where
V is unitary and S is diagonal. Note that in order for the
problem to be feasible, the dual variable should satisfy I −
λkVSV−1 � 0, which is equivalent to I− λkS � 0. Taking
the derivative of L with respect to y∗

k, we obtain

yk +A
− 1

2
k bk − λkVSV−1yk = 0, (31)

which is equivalent to

yk = V(I− λkS)
−1V−1(−A

− 1
2

k bk). (32)

The Lagrange dual variable λk can be obtained by the bisec-
tion method, and the corresponding upper bound λk and lower
bound λk can be found by resorting to I − λkS � 0, which
results into λk = 1

max(0, diag(S)) and λk = 0.
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