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Abstract—In this paper, joint sensor localization and synchro-
nization in non-cooperative wireless sensor networks (WSNs)
using time-of-arrival (TOA) measurements is studied. In addition
to zero-mean errors in TOA measurements we consider other
sources of error such as non-line-of-sight (NLOS) propagation
and anchor uncertainty to make our technique more useful in
practice, where the presence of these errors is inevitable. The
proposed technique is based on semi-definite programming (SDP)
relaxation which can be solved in polynomial time and guarantees
convergence to the global minimum. It is shown that the optimal
accuracy is obtained by discarding the NLOS measurements
and applying the maximum likelihood (ML) technique to jointly
estimate the positions of anchor nodes, and the position and
clock parameters of the sensor node. The results show that
the proposed SDP technique, which does not require prior
identification of NLOS links, is robust against NLOS errors and
its performance is close to that of optimal accuracy.

Index Terms—Convex relaxation, joint localization and syn-
chronization, non-line of sight, semidefinite programming.

I. INTRODUCTION

Sensor localization has recently received much attention due

to the tremendous number of applications, e.g., in surveil-

lance, healthcare, security, etc [1], [2]. The signal of Global

Positioning System (GPS) is typically either severely de-

graded or unavailable in indoor places and dense urban areas.

Furthermore, the battery consumption of a GPS receiver is

high and thus using GPS may not be suitable for a wireless

sensor network (WSN) with power constraints. Due to the

mentioned limitations of the GPS, a sensor-based localization

system needs to be employed to offer a reliable localization

service for different applications. In sensor-based localization,

fixed anchor nodes with known locations are used instead of

satellites and a sensor with an unknown position is localized

by using the measurements obtained within the network.

Different measurements can be exploited between the nodes

for the aim of localization, among which time-of-arrival (TOA)

measurements in ultra wide-band (UWB) systems have re-

ceived great attention due to the high resolution of the timing

pulses [3]. Although a two-way ranging (TWR) protocol

can remove the sensor’s clock offset and provide relatively

accurate TOA measurements, the effect of clock skew can

lead to large ranging errors in some applications. Therefore,

synchronization is an essential part of TOA-based localization.

In some systems, the clocks at the sensor nodes are first

synchronized, e.g., see in [4], and then the localization can

be performed by various techniques as summarized in [5].

However, the two-step approaches might yield poor localiza-

tion performance due to inaccurate synchronization. Due to

the close relationship between range and clock parameters,

several studies have focused on joint approaches, where syn-

chronization and localization are performed simultaneously.

Different techniques in the literature for joint localization and

synchronization show that the performance can be improved

over the two-step approaches [6]–[9].

The cost function that needs to be minimized for the

localization problem or joint localization and synchronization

is nonlinear and non-convex; hence the maximum likelihood

(ML) method needs an accurate initial point such that it

converges to the global minimum. To avoid this problem,

the cost function can be relaxed to a convex one such that

the global optimum can be obtained in polynomial time by

iterative techniques. For localization problems, relaxations to

semi-definite programming (SDP) and second order cone pro-

gramming (SOCP) problems have been considered in [10] and

[11], respectively, where it is assumed that no clock parameters

exist in the cost function. When the clock parameters are also

unknown, an SDP relaxation of the optimization problem has

been considered in [12].

Although these estimators perform well in line-of-sight

(LOS) situations, in practice this assumption is not satisfied

due to multipaths and blockage of the LOS signal. In fact, one

of the main sources of error in WSN localization is the non-

line-of-sight (NLOS) problem which is usually inevitable in

indoor places and urban canyons, and results in positively bi-

ased TOA measurements. TOA-based localization techniques

in NLOS situations have been widely studied in the literature.

A summary of different NLOS mitigation techniques can be

found in [13]. In scenarios where the NLOS measurements can

not be identified, robust techniques against NLOS errors have

been recently proposed in [14], [15]. However, all previous

studies assume that perfect synchronization is maintained

between the sensor and the anchor nodes, thus localization

performances will degrade in the presence of synchronization

errors.

In this work, we consider joint localization and synchro-

nization of a sensor in a non-cooperative WSN with anchor

uncertainty and NLOS errors, where we assume that the

NLOS links have not been identified. We first consider the



optimal result, i.e., the ML estimate, which can be obtained

by identifying the NLOS measurements and discarding them,

and only minimizing the 2-norms of the errors due to the

LOS measurements [16]. In this case we assume that we have

a sufficient number of links. We then relax the ML problem

into an SDP problem such that it is robust against NLOS errors

in the TOA measurements. The simulation results show that

the proposed technique can obtain a performance close to the

optimal solution when the number of NLOS measurements is

low compared to LOS ones. Furthermore, its performance is

also robust in severe NLOS contamination and outperforms

state-of-the-art techniques.

The remainder of this paper is organized as follows. In

Section II, the system model of joint synchronization and

localization in NLOS environments is introduced. The opti-

mal performance of the system is discussed in Section III.

The proposed NLOS mitigation technique based on SDP is

described in Section IV. The simulation results are illustrated

in Section V. Finally Section VI concludes the paper.

II. SYSTEM MODEL

The following notation is used throughout the paper. Low-

ercase and uppercase letters denote scalar values. Bold upper-

case and bold lowercase letters denote matrices and vectors,

respectively. IM and 0M denote the M × M identity and

zero matrices, respectively. 1M is a length-M column vector

of ones. For arbitrary symmetric matrices A and B, A � B

means that A−B is positive semidefinite.

We consider a two-dimensional (2D) network with M fixed

anchor nodes located at positions xj = [xj , yj ]
T ∈ R

2 for

j = 1, . . . ,M , and a sensor located at x = [x, y]T ∈ R
2.

The position of the sensor is unknown while the position of

the anchor nodes are estimated through another system, e.g.,

GPS. Therefore, estimates of xj’s are available as aj , which

are modeled herein as

aj = xj + uj , j = 1, . . . ,M (1)

where uj ∈ R
2 is a zero-mean Gaussian error with covariance

matrix Φj , which is assumed to be known.

The anchor nodes are synchronized with a reference clock,

while the sensor is not synchronized with the network and its

local clock reading can be modelled as

C(t) = αt+ θ0 (2)

where t is the true time, and θ0 and α are the relative clock

offset and clock skew parameters between the clock of the

sensor and those of the anchor nodes, respectively. Since the

anchor nodes can be synchronized with an accurate local

clock, we can assume that the clock skews of the anchor nodes

are equal to 1 and their clock offsets are 0. The scheme of the

local times of a sensor and an anchor are illustrated in Fig. 1.

The links between the sensor and the anchor nodes are

divided into two sets: L and N contain the indices of the

anchor nodes which have LOS and NLOS links with the

sensor, respectively. In exchanging the timing signals, the j-th

anchor node transmits at time tjs,0 and if the sensor clock

Fig. 1. Illustration of the local times of a sensor and an anchor.

is synchronized with the anchor clocks, the timing signal is

received at the sensor at tjs,1 where

tjs,1 =

{
tjs,0 +

‖x−xj‖
c

+ nj,0, j ∈ L

tjs,0 +
‖x−xj‖

c
+

bj,0
c

+ nj,0, j ∈ N
(3)

where nj,0 is a zero-mean Gaussian measurement noise with

a variance of σ2
j . The variance of the measurement noise

depends on SNR, bandwidth, signal duration, and carrier

frequency [17], and can be modelled as

σ2
j =

ξ

c2
‖x− xj‖

γj (4)

where ξ is a positive scaling factor whose value depends

on the propagation environment and hardware implementation

aspects. γj is the path-loss exponent whose value depends on

the propagation environment as

γj = γL, j ∈ L, γj = γN , j ∈ N . (5)

where usually γL = 2 (free space) and γN = 3 (harsh

environments) are considered [18] . Finally, bj,0 in (3) is the

NLOS bias which is a large positive random variable, and

has been modeled as uniform [19], or exponential [20], to

name a few. Note that we do not assume there is any a-priori

information about the NLOS distribution or which link is in

NLOS. Due to the erroneous behavior of sensor’s clock, the

clock reading at the sensor is

C(tjs,1) = αtjs,1 + θ0. (6)

Therefore, we can model the clock reading as

C(tjs,1) =

{
α(tjs,0 +

‖x−xj‖
c

+ nj,0) + θ0

α(tjs,0 +
‖x−xj‖

c
+

bj,0
c

+ nj,0) + θ0
(7)

By dividing (7) by α we have

−tjs,0 =

{
−C(tjs,1)−θ0

α
+

‖x−xj‖
c

+ nj,0

−C(tjs,1)−θ0
α

+
‖x−xj‖

c
+

bj,0
c

+ nj,0

(8)



Then after a certain delay the sensor transmits at time tsj,0,

the emitted signal travels the required distance and arrives at

the j-th anchor at time tsj,1:

tsj,1 =

{
tsj,0 +

‖x−xj‖
c

+ nj,1, j ∈ L

tsj,0 +
‖x−xj‖

c
+

bj,1
c

+ nj,1, j ∈ N
(9)

However, the sensor does not know tsj,0 accurately due to

its clock error; hence, its clock reading is C(tsj,0) which is

related to tsj,0 as

C(tsj,0) = αtsj,0 + θ0. (10)

Therefore, the received time stamp at an anchor node is

tsj,1 =

{
C(tsj,0)−θ0

α
+

‖x−xj‖
c

+ nj,1, j ∈ L
C(tsj,0)−θ0

α
+

‖x−xj‖
c

+
bj,1
c

+ nj,1, j ∈ N
(11)

To simplify the expressions, we define two auxiliary variables

as θ1 = 1/α and θ2 = θ0/α. Therefore, for each anchor node

with a LOS link, i.e., j ∈ L, we have

−tjs,0 = −C(tjs,1)θ1 + θ2 +
‖x− xj‖

c
+ nj,0 (12)

tsj,1 = C(tsj,0)θ1 − θ2 +
‖x− xj‖

c
+ nj,1. (13)

Similarly, for each NLOS links, i.e., j ∈ N , we have

−tjs,0 = −C(tjs,1)θ1 + θ2 +
‖x− xj‖

c
+

bj,0
c

+ nj,0 (14)

tsj,1 = C(tsj,0)θ1 − θ2 +
‖x− xj‖

c
+

bj,1
c

+ nj,1. (15)

In the following sections, the optimal performance expected

from the above system model is provided.

III. PERFORMANCE EVALUATION

The performance analysis of NLOS localization for syn-

chronous TOA-based networks is given in [15], [16] where

it is shown that the Cramér-Rao lower bound (CRLB) of the

sensor location is only dependent on the LOS links, if no

statistical information about NLOS distribution is available

[16]. Moreover, the optimal accuracy can be achieved by iden-

tifying the NLOS connections, discarding them, and employ-

ing an ML estimation technique to maximize the likelihood

of the LOS measurements given the unknown parameters.

Therefore, the ML estimate obtained by using only LOS

connections can be used as a benchmark if a sufficient number

of LOS measurements are available. The ML estimates of

X = [x1, . . . ,xM ,x] and θ = [θ1, θ2]
T are obtained by

solving the following minimization problem [21]:

min
X,θ

∑
j∈L

[
wj

(
tjs,0 − C(tjs,1)θ1 + θ2 +

‖x− xj‖

c

)2

+ wj

(
tsj,1 − C(tsj,0)θ1 + θ2 −

‖x− xj‖

c

)2]

+

M∑
j=1

(xj − aj)
T
Φ

−1
j (xj − aj) (16)

where wj = (σ2
j )

−1 are the weighting elements equal to the

inverse of the measurement noise variances. In this work, we

have assumed that NLOS connections cannot be identified.

Hence, finding the ML estimate, the solution of (16) is

rather idealistic, but it will provide a lower bound on the

localization error in order to compare the accuracy of our

proposed technique under certain conditions. The ML estimate

can be obtained only if there are at least four LOS connections

available. When the sensor does not have a sufficient number

of LOS connections, we can no longer obtain the ML estimate

by (16), as no unique solution can be found in this case [22].

IV. SEMIDEFINITE PROGRAMMING

In this section, we develop an SDP relaxation technique

for NLOS localization. Finding the ML estimate by solving

(16) has three main problems. First, we need to identify

the NLOS connections perfectly which is a difficult task.

Second, access to a sufficient number of LOS anchors is not

always possible due to limited network connectivity or NLOS

situation, thus finding the ML estimate will be intractable.

Third, the optimization problem in (16) is not convex. Since

the cost function is nonlinear, an iterative method must be

applied which requires an initial point. Also since the cost

function is non-convex, the iterative solver might be stuck

in a local minimum and produce large estimation errors.

To alleviate these issues, an SDP relaxation technique is

developed, which uses all the measurements and requires

no NLOS identification. As a result of this relaxation, the

optimization problem becomes convex and convergence to the

global minimum is guaranteed.

The expressions in (12) can be written in matrix form as

t
a = T

s
θ + d+ n (17)

where

t
a =

⎡
⎢⎢⎢⎢⎢⎣

−t1s,0
ts1,1

...

−tMs,0

tsM,1

⎤
⎥⎥⎥⎥⎥⎦ , T

s =

⎡
⎢⎢⎢⎢⎢⎣

−C(t1s,1) 1
C(ts1,0) −1

...

−C(tMs,1) 1
C(tsM,0) −1

⎤
⎥⎥⎥⎥⎥⎦

d =
1

c

⎡
⎢⎢⎢⎢⎢⎣

d1
d1
...

dM
dM

⎤
⎥⎥⎥⎥⎥⎦ , nk =

⎡
⎢⎢⎢⎢⎢⎣

n1,0

n1,1

...

nM,0

nM,1

⎤
⎥⎥⎥⎥⎥⎦ ,

with dj = ‖x− xj‖. Since we do not know if a connection

is NLOS or not, we assume all connections are NLOS. As

the NLOS biases are positive and much larger than the noise

terms it follows that with a high probability

‖x− xj‖

c
− C(tjs,1)θ1 + θ2 ≤ −tjs,0, j = 1, . . . ,M (18)

‖x− xj‖

c
+ C(tsj,0)θ1 − θ2 ≤ tsj,1, j = 1, . . . ,M (19)



Since (18) and (19) might not often hold true for LOS

connections as the measurement noise has a zero-mean, it may

be better to add a portion of the measurement noise standard

deviation to the right side of them, to make them relaxed,

similar to what done in [23]. However, in our simulations we

observed better results in situations with large ratios of NLOS

to LOS links, and only slightly worse results in low ratios

of NLOS to LOS links, when (18) and (19) are used without

modification. We then formulate the following nonlinear least

squares problem

min
X,θ

∥∥∥Σ− 1

2 (ta − d−T
s
θ)
∥∥∥2 + M∑

j=1

(xj − aj)
T
Φ

−1
j (xj − aj)

s.t. (18), (19), (20)

where Σ = diag{σ2
1 , σ

2
1 , σ

2
2 , σ

2
2 , . . . , σ

2
M , σ2

M} and we assume

that this matrix is known in the algorithm, which can be

achieved approximately by obtaining a set of consecutive

TOA measurements and empirically calculating the sample

variance for each link. Although the constraints in (18) and

(19) are convex, the problem in (20) is still non-convex. In

the following, we relax this optimization problem to a convex

one. The first term in (20) can be expressed as

Trace
{
Σ

−1
(
t
a − d−T

s
θ

)(
t
a − d−T

s
θ

)T}
(21)

which can also be rewritten as

Trace
{
Σ

−1
(
t
a −Ud̃)

)(
t
a −Ud̃

)T}
where

U =

⎡
⎢⎢⎢⎢⎢⎣

1 . . . 0 −C(t1s,1) 1
1 . . . 0 C(ts1,1) −1
...

. . .
...

...

0 . . . 1 −C(tMs,1) 1
0 . . . 1 C(tsM,1) −1

⎤
⎥⎥⎥⎥⎥⎦ , d̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

‖x−x1‖
c

‖x−x2‖
c
...

‖x−xM‖
c

θ1
θ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

By expanding the second term in the objective function in

(20), and ignoring the constant terms, in line with [24], we

can rewrite the optimization problem in (20) as

min
X,θ

Trace
{
Σ

−1
(
t
a(ta)T − 2Ud̃(ta)T +UDU

T
)}

+

M∑
j=1

(
Trace(Φ−1

j Ξj)− 2aT
j Φ

−1
j xj

)
s.t. (18), (19). (22)

where

D = d̃d̃
T

(23)

Ξj = xjx
T
j , j = 1, . . . ,M. (24)

Note that the first M diagonal elements of the matrix D are

[D]jj =
d2j
c2

=
1

c2
[
eTj −1

]
Z

[
ej

−1

]
, j = 1, . . . ,M, (25)

where

Z = X
T
X (26)

and ej is an M×1 vector in which the jth element is one and

the other elements are zero. Now we regard D, Ξj , d̃, and Z

as variables and by including all the equalities in (23), (24),

(25), and (26) into the optimization problem in (22), similar

to [18], the problem becomes

min
X,{Ξj},D,Z,d̃

Trace
{
Σ

−1
(
t
a(ta)T − 2Ud̃(ta)T +UDU

T
)}

+

M∑
j=1

(
Trace(Φ−1

j Ξj)− 2aT
j Φ

−1
j xj

)

s.t. D = d̃d̃
T
, Z = X

T
X,

[D]jj =
1

c2
[
eTj −1

]
Z

[
ej

−1

]
,

Ξj = xjx
T
j , d̃j ≥ 0, j = 1, . . . ,M,

(18), (19). (27)

where we have added the obvious constraint that d̃j ≥ 0 for

j = {1, . . . ,M} since d̃j = ‖x−xj‖/c. Now the cost function

of the problem in (27) is linear in terms of individual elements

of matrices D and Ξj . The constraints in (25) are affine with

respect to X and Z hence they are convex. However, the

constraints in (23), (24), (26) are non-convex, which make

the optimization problem in (27) non-convex. Relaxing the

aforementioned non-convex constraints in (27) is done by

replacing the equalities with linear matrix inequalities, hence

we obtain

min
X,{Ξj},D,Z,d̃

Trace
{
Σ

−1
(
t
a(ta)T − 2Ud̃(ta)T +UDU

T
)}

+

M∑
j=1

(
Trace(Φ−1

j Ξj)− 2aT
j Φ

−1
j xi

)

s.t.

[
D d̃

d̃
T

1

]
� 0M+3,

[
I2 X

X
T

Z

]
� 0M+3,

[D]jj =
1

c2
[
eTj −1

]
Z

[
ej

−1

]
,[

Ξj xj

x
T
j 1

]
� 03, d̃j ≥ 0, j = 1, . . . ,M,

(18), (19), (28)

which is an SDP problem and can be solved effectively with

interior point methods [25]. Standard SDP solvers such as

SeDuMi [26] can be employed to solve the SDP optimization

problem in (28) in MATLAB.

V. SIMULATION RESULTS

In this section, computer simulations are conducted to

evaluate the performance of the proposed SDP technique in

NLOS environments. We consider a network with 8 anchor

nodes and with a size of 100 m × 100 m. Full connectivity is

assumed, hence the sensor is connected to all anchor nodes.

The sensor is randomly placed in the area. The value of



TABLE I
A SUMMARY OF THE CONSIDERED TECHNIQUES.

Estimator Description

ML-LOS The ML estimator using only LOS links, i.e., based on (16)
SDPM The proposed SDP technique in (28)
SDP An SDP technique considered in [12]
ML The ML estimator using all connections
LLS A linear estimator in [27]

γL and γN are set to 2 and 3, respectively. The value of

ξ is set to 0.02 and the noise variance σ2
j is assumed to

be known based on (4). The NLOS biases are generated

from an exponential distribution whose mean is uniformly

distributed between 10 and 30 m. The clock offset and skew

of the sensor are drawn from a uniform distribution U [0, 10−1]
μs and U [0.995, 1.005], respectively. The positioning error

covariance matrix of the anchor nodes is set to be Φj = 25I2.

In each experiment, 5000 realizations are generated. In each

realization, the measurement noises, sensor location, and clock

parameters are randomized.

The ML estimate is obtained by the MATLAB routine

lsqnonlin, which uses the Levenberg-Marquardt method.

The solver of the ML estimator is initialized with the true

values of the sensor location to provide the actual benchmark

on the error. The proposed SDP technique is implemented with

the CVX toolbox [28] using SeDuMi as a solver [26]. Besides

the proposed SDP technique, labeled as SDPM where M

stands for ”modified”, four other estimators are considered for

comparisons. The ML estimator using only LOS links (labeled

as ML-LOS) is included as a benchmark. We also include

the performance of the ML estimator using all measurements

where no NLOS mitigation technique is used (labeled as

ML). The performances of a linear estimator in [27] and an

SDP technique in [12], which do not directly do any NLOS

mitigation, are also provided in the simulations.

We have considered two NLOS scenarios in our simulations:

mild and severe. In the mild scenario, 25% of the connections

are NLOS, while in the severe scenario 75% of the connections

are NLOS. In the simulated network, each sensor is connected

to 8 anchor nodes. For the mild scenario, 2 out of the 8

connections are randomly selected as NLOS and randomly

generated biases are added to them.

Fig. 2 shows the cumulative distribution function (CDF)

of the obtained localization error of the sensor position.

The localization error is defined as the Euclidean distance

between the true position and estimated position of the sensor,

i.e., ‖x − x̂‖, where x̂ is the estimated position. Fig. 2a

demonstrates that as expected the optimal performance is

provided by the ML estimator using only LOS connections.

It should be noted that the performance of ML-LOS is only

plotted as a benchmark for comparison. Since in this work,

we have assumed that the estimator does not know which

connections are NLOS, achieving this performance is very

optimistic, as it requires to identify the NLOS connections

perfectly and initialize the ML solver appropriately. The linear
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Fig. 2. The CDF of localization error in estimating the sensor position using
the considered estimators, where 25% and 75% of the connections are NLOS
in mild and severe scenarios, respectively. SDPM represents the performance
of the proposed SDP technique.

estimator with no NLOS mitigation technique provides the

worst performance. This is mainly due to the fact that NLOS

connections are treated as LOS ones which can degrade the

performance substantially, even in a mild NLOS environment

where only one or two connections are NLOS. The ML

estimator without NLOS mitigation also performs poorly. The

SDP technique without NLOS mitigation performs better than

LLS and ML, since SDP techniques are typically more robust

against outliers and large measurement errors. The technique

proposed in this paper, SDPM outperforms the other estimators

and its performance is very close to that of ML-LOS. Note that

unlike ML-LOS, the SDPM does not know which connections

are NLOS, yet provides excellent performance.

Fig. 2b shows the performance of the considered estimators

in a severe NLOS environment. In this case, 6 out of 8 connec-

tions are NLOS and the sensor has only 2 LOS connections.

ML-LOS is not included in this simulation, since the sensor



TABLE II
THE LOCALIZATION AND SYNCHRONIZATION RMSE OF THE CONSIDERED

TECHNIQUES IN THE MILD NLOS SCENARIO.

Estimator Location [m] Clock Skew Clock Offset [μs]

ML-LOS 10.48 0.11 5.10
SDPM 10.71 0.12 5.21
SDP 12.07 0.14 5.88
ML 13.10 0.19 6.52
LLS 16.17 0.24 8.27

does not have access to a sufficient number of anchor nodes

if NLOS connections are discarded. The sensor needs LOS

connections to at least 4 anchor nodes to be localizable, hence

ML-LOS is intractable in this case. The performances of all

other estimators degrade in a severe NLOS environment, since

the majority of connections are NLOS. However, Fig. 2b

shows that the proposed estimator, SDPM still outperforms the

other estimators significantly in a severe NLOS environment.

More specifically, the proposed technique, SDPM with a

NLOS mitigation ability can improve the localization error

by 30% at 80% CDF in comparison with the SDP technique

without NLOS mitigation.

In Table II, we compare different techniques in terms of the

root-mean-square error (RMSE) performance. The RMSEs of

location, clock skew, and clock offset estimates for the mild

NLOS scenario are provided. Table II shows the close relation-

ship between the localization and synchronization accuracy.

The estimator with more precise synchronization provides a

higher localization accuracy as well.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have developed a technique for joint

localization and synchronization for WSNs which mitigates

the impacts of anchor position error and NLOS propagation.

A novel SDP relaxation technique with an ability to mitigate

NLOS propagation was developed such that the cost func-

tion becomes convex and easy to solve by standard convex

optimization techniques. The simulation results show that the

performance of the proposed technique is close to the optimal

performance and is robust against NLOS errors. Extension

of the proposed technique to a cooperative WSN and further

validation of the results through experimental analysis would

be considered in the future work.
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