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Abstract—In this paper, we propose diffusion-based least mean
square (LMS) algorithms that are robust against fading phenom-
ena in wireless channels. The proposed algorithms, developed by
combining diffusion LMS and classical estimation approaches,
are able to estimate and update the underlying system parameters
at each node by exploiting the sensor measurements and the
fused data obtained from the neighboring nodes. The fusion of
the information at each node takes place based on a convex
combination strategy whose coefficients are determined according
to the channel state information, the noise statistics and the
output error of the local adaptive filter. In this work, we assume
the broadcast data from the sensors experience Rayleigh fading
and are further contaminated by the additive noise. Numerical
results demonstrate the efficiency of the proposed algorithms and
show their satisfactory performance compared with the costly
centralized adaptive techniques.

Index Terms—Distributed adaptive algorithms; wireless sensor
networks; diffusion cooperative strategy; non-ideal inter-sensor
channels.

I. INTRODUCTION

Modern wireless sensor networks (WSN), aimed to monitor
various physical phenomena over a given geographical area,
have to operate over a wide range of time-varying conditions,
due to e.g. fading channels, deviations in network energy
profile, changes in network topology, and other factors that
exhibit random behavior over time and space. From a signal
processing perspective, there is consequently a strong need
to develop robust distributed and adaptive parameter estima-
tion algorithms that can perform efficiently under such time-
varying conditions. Moreover, these algorithms must exhibit
low computational complexity and small data rates to fulfil
the network survivability and energy requirements.

Work in distributed adaptive algorithms traces back to
distributed computation and optimization which are mature
research topics in computer science. In optimization theory,
distributed iterative algorithms based on incremental gradient
schemes have been proposed to solve distributed least square
problems [1]. Later, distributed iterative algorithms have been
investigated for in-network processing to reduce the overall
communication bandwidth and energy requirements of sensor
networks [2]. Recently, incremental adaptive algorithms based
on LMS and recursive least square (RLS) have been reported
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[3]–[5] to further minimize the use of network resources. In
these algorithms, the exchange of information between sensors
(also called nodes here) is achieved through a Hamiltonian cy-
cle; while they function well for low-energy profile networks,
setting such a cycle may not be trivial for a large size network
topology.

In [6] and [7], diffusion based adaptive algorithms have
been introduced to improve the network scalability. Since
then, different versions and improvements of these algorithms
have been proposed, among them are the diffusion Kalman
filtering [8] and diffusion adaptive algorithms with adaptive
combiner [9]. The latter improves the overall performance
of diffusion-based adaptive algorithms by upgrading the local
node combiner to an adaptive one.

In a diffusion strategy, each node communicates with its
immediate neighbors in its range (i.e, reachable via single hop
link), thereby avoiding the need to establish a Hamiltonian
loop in the network. However, these algorithms require higher
communication rate than the incremental-based algorithms.
To rectify this problem, the authors in [10] have proposed
distributed consensus LMS and RLS algorithms that have a
lower communication rate as compared with the approaches
in [6] and [7]. In these algorithms, the exchange of information
between sensors follows a hierarchical communication struc-
ture that substantially decreases the overall communication
rate of the network.

In spite of the significant advances offered by distributed
adaptive algorithms above, they may function improperly
in real-world applications due to neglecting the effect of
wireless channels impairments in the process. To address this
concern, the authors in [10], [11] have incorporated additive
Gaussian noise in the underlying model of the inter-sensor
communication which lead to improved distributed adaptive
algorithms under such conditions. Yet, in this work, important
impairments of wireless channels, such as multipath fading
and phase distortion are not taken into consideration.

In this work, we present new diffusion-based LMS algo-
rithms that can operate under the detrimental effects of both
fading and noise in inter-sensor communication links. The
proposed algorithms are obtained as a combination of diffusion
LMS and linear estimation approaches, including the best
linear unbiased estimation (BLUE). The developed distributed
adaptive algorithms estimate and track the underlying system



parameters at each node by exploiting the sensor current mea-
surement and the available data obtained from the neighboring
nodes. These data are fused according to a convex combination
whose coefficients depend on the channel state information,
the noise statistics and the output error of the local adaptive
filter. Numerical experiments confirm the efficiency of the
proposed algorithms and show their satisfactory performance
compared with their centralized adaptive counterparts.

The paper is organized as follows: In Section II, we present
the system model and problem formulation. The detail descrip-
tions and derivations of the proposed algorithms are given in
Section III. In Section IV, we present the numerical results
to support the proposed idea. This is followed by a brief
conclusion in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a network of N sensors, randomly distributed
over a geographic region to monitor a physical phenomenon
characterized by a parameter vector w ∈ CM . The network
aims to estimate this vector by processing the set of sensor
measurements obtained over space and time, by means of a
distributed adaptive LMS algorithm. We assume a diffusion
strategy, in which each node exchange information via wireless
communication with all immediate neighbors in its range, i.e.
reachable via a single hop link. The parameter estimation
model for this type of in-network adaptive scheme can be
expressed by the following set of equations:

dk(i) = wHuk(i) + vk(i) (1)
rk,l(i) = hk,l(i)ψl(i− 1) + nk,l(i), l ∈ Nk (2)
ψk(i) = f({rk,l(i)}l∈Nk , dk(i)), (3)

where the superscript H represents the conjugate transpose
operation, k ∈ {1, 2, . . . , N} is the sensor index, and i ∈ N
indicates the discrete-time index of the adaptation cycle. Equa-
tion (1) is a descriptive model of the physical phenomenon
under measurement. Specifically, it shows the relationship be-
tween the reference signal at the kth sensor, denoted by dk(i),
the system parameter vector w, the local regressor vector
uk(i) ∈ CM and the measurement noise vk(i). For instance, w
may represent the coefficients of discretized partial differential
equations (PDE) that describes the physical phenomenon un-
der consideration [12]. The measurement noise, vk(i) is a zero
mean Gaussian process and uncorrelated across both space and
time domains, i.e, E[vk(i)vm(j)] = σ2

v(k)δijδkm, where σ2
v(k)

denotes the noise variance.
Equation (2) characterizes the inter-sensor communications,

incorporating the effect of noise and fading in the wireless
links. In this equation, ψl(i) denotes the local estimate of
w, as maintained by sensor l at time i, while rk,l(i) denotes
the received data vector at the kth sensor from the lth sensor
through the wireless diffusion process, where l ∈ Nk and
Nk = {νk,1, νk,2, . . . νk,Lk} is the set of neighboring sensors
in the range of node k, and Lk = |Nk| is the number
of neighbors. The diffusion process can be sequential and
governed by a time division multiplexing access (TDMA)
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Fig. 1. Data communication at node k (L ≡ Lk)

scheme. The implementation aspects and time scheduling of
sequential diffusion process are important issues in WSN and
need extensive discussions that however fall beyond the scope
of this article. According to (2), rk,l(i) is the distorted version
of the estimated system parameter ψl(i − 1) corrupted by
the Rayleigh fading channel, which is represented here by
the time-varying complex gain hk,l(i), and additive white
noise nk,l(i) ∈ CM×1. The noise sequence nk,l(i) is a zero-
mean additive white Gaussian (AWGN) process, uncorrelated
across the sensors and time with diagonal covariance ma-
trix E[n(k, l)n(k, l)H ] = σ2

n(k,l)IM , where IM denotes the
M ×M identity matrix.

Equation (3) is the update equation of the kth sensor in
which the local estimated system parameter, ψk(i), is updated
by exploiting its own current local measurement, dk(i), and
the received data from the neighboring sensors, i.e. rk,l(i),
l ∈ Nk. The signal processing task and data communication
model for node k, with L ≡ Lk active neighbors is illustrated
in Fig. 1.

The update equation (3) of node k can be designed based on
different constraints and criteria, such as mode of cooperation
between nodes, adaptive filtering scheme and wireless channel
conditions. Assuming a diffusion strategy, LMS adaptive algo-
rithm and an ideal wireless channel (i.e. hk,l = 1, nk,l(i) = 0)
then (3) can be realized via the following two equations, which
form the core of diffusion LMS algorithms developed in [6]:

φk(i) =
∑
l∈Nk

ck,l(i)ψl(i− 1) (4)

ψk(i) = φk(i) + µu∗k(i)[dk(i)− φTk (i)uk(i)] (5)

In (4), ck,l(i) denotes the (k, l)th entry of the network adja-
cency matrix C(i) ∈ CN×N in which ck,l(i) = cl,k(i) 6= 0
when l ∈ Nk and cl,k(i) = 0 otherwise. Technically, ck,l(i)
can be interpreted as the level of participation of node l ∈ Nk
in the update of the system parameter at node k.

The diffusion algorithm, described by (4)-(5), may function
improperly and diverge when used in a real-world wireless



0 100 200 300 400 500 600
10

-4

10
-3

10
-2

10
-1

10
0

10
1

Iteration number

M
S

E

 

 

Fading channel with noise

No fading but noisy channel

No fading and no noise

Fig. 2. Performance of conventional diffusion algorithms in wireless channels

environment. In practice, the undistorted value of the estimated
system parameter vector, represented by ψl(i) in (4), is
unavailable at node k; instead, only the distorted version of this
estimated system parameter, i.e. rk,l(i) as per (2), is available.

Considering a simplified scenario where the source of
distortion in (2) is only additive white Gaussian noise (i.e,
no fading), the authors in [10] and [11] proposed diffusion-
based LMS and RLS algorithms, aimed to suppress the effect
of the link noise, nk,l(i), from the received estimated system
parameter rk,l(i). These algorithms which were formulated
as constrained distributed LMS and RLS problems, demand
higher computational power than the unconstrained ones, since
the Lagrange multipliers associated with each node need to
be updated at every time iteration. In addition, despite their
robustness to the noisy channel, they may diverge in real-
world operation. This is because the complex gain of the
wireless channel, hk,l(i), can mislead the search direction of
the algorithm in reaching the optimal point. Fig. 2 supports
our claim, where the solid red curve implies the divergence
of diffusion-based adaptive algorithm under such conditions.
In this work, we address this problem and develop two types
of diffusion LMS algorithms that can be used in both AWGN
and Rayleigh fading channels.

III. THE PROPOSED ALGORITHMS

Development of the proposed algorithms follows a four-step
approach, corresponding to the main processing tasks of the
algorithms at each node, namely, channel equalization, local
estimation, data fusion and adaptive iteration.

As shown in Fig. 3, to retrieve the distorted estimated
system parameters received through wireless channel, the first
step is to remove the effect of the channel. This is simply
done by multiplying the received data from the lth sensor
by the complex conjugate of the corresponding channel gain,
i.e., h∗k,l(i), which amounts to a matched filtering operation.
In the second step, the obtained filtered values from the first
step are supplied to a linear estimator whose output, φ̄k(i),
is produced based on the available information about the
statistical property of the channel and link noise. The third
step is data fusion, where a convex combination of the linear

...

( )
k

iφ

C
h
an
n
el
 e
q
u
al
iz
er

D
at
a 
fu
si
o
n

L
in
ea
r 
es
ti
m
at
o
r

L
M
S
 l
o
ca
l 
fi
lt
er

1,
( )

k
k

i
ν

r

2,
( )

k
k

i
ν

r

,
( )

kL
k

i
ν

r

( )
k

iψ( )
k

iφ

1

ˆ ( 1)
k

iνψ −

2

ˆ ( 1)
k

iνψ −

ˆ ( 1)
kL

iνψ −

...

1
z

−

( )
k

d i

( )
k

iu

Fig. 3. Parameter estimation and tracking at node k

estimator’s output ,φ̄k(i), and the previous estimated system
parameter, i.e. ψk(i− 1), generates a refined estimate, φk(i),
to be used in the LMS update equation at node k. The convex
coefficients are computed according to the variances of the
measurement noise and other system parameters as explained
below. The last step is to update or track the system parameter
vector using a local LMS filter based on the refined estimate
φk(i), the regressor uk(i) and the local reference dk(i). In the
following subsections, we present the details of above four-
step approach for two common wireless channel scenarios,
i.e. AWGN and Rayleigh fading, leading to new forms of
diffusion-based LMS algorithms.

A. Diffusion LMS algorithm over AWGN Channel

In this scenario, the received data by node k from the
neighboring sensors can be expressed as

rk,l(i) = ψl(i− 1) + nk,l(i), l ∈ Nk. (6)

Since the channel is assumed ideal, i.e, hk,l(i) = 1, the
first step of the proposed four-step approach, i.e. channel
equalization, is unnecessary and we therefore proceed to the
second step. Depending on the extent of the prior knowledge
about the statistics of the noise in (6), the linear estimator
at node k generates an estimate of the transmitted system
parameters, i.e.:

φ̄k(i) = Γk(rk,l(i) : l ∈ Nk), (7)

where Γk() denotes the estimation operator. In this work, we
assume that Γk is the BLUE estimator [13], but other choices
are possible. In this case, we obtain

φ̄k(i) =

∑
l∈Nk rk,l(i)σ

−2
n(k,l)∑

l∈Nk σ
−2
n(k,l)

, (8)

Under the assumption that the estimated system parameter
vectors at node l are error free, i.e. ψl(i) = w, the mean-
square error of this estimator, computed as E‖w− φ̄k(i)‖2 =
(
∑Nk
l=1 σl

−2)−1, is minimum among all linear unbiased esti-
mator. The third step, i.e. data fusion, is to express φk(i) as
a convex combination of φ̄k(i) and ψk(i− 1), as given by:

φk(i) = βkψk(i− 1) + (1− βk)φ̄k(i) (9)



where βk ∈ [0, 1], can be computed based on the variances of
the measurement noise at node k and its neighbors via

βk =
σ−2v(k)

σ−2v(k) + σ−2v(Nk)
, (10)

where, σ2
v(Nk), the average of the measurement noise variance,

is given by

σ2
v(Nk) =

1

Lk

∑
l∈Nk

σ2
v(l). (11)

In the last step, the local estimate of the system parameter
vector at node k, i.e., ψk(i), is updated by substituting
the value of the refined estimate φk(i) from (9) into the
distributed LMS update equation given in (5). This estimation
process, describing the signal processing tasks performed over
the network within one adaptation cycle, is summarized in
Algorithm 1.

Algorithm 1 Diffusion LMS algorithm for AWGN channel
for k = 1 : N do
{Diffusion process}
for l ∈ Nk do
rk,l(i) = ψl(i− 1) + nk,l(i)

end for
{Local parameters update}
φ̄k(i) =

∑
l∈Nk

rk,l(i)σ
−2
n(k,l)∑

l∈Nk
σ−2
n(k,l)

σ2
v(Nk) = 1

Lk

∑
l∈Nk σ

2
v(l)

βk =
σ−2
v(k)

σ−2
v(k)

+σ−2
v(Nk)

φk(i) = βkψk(i− 1) + (1− βk)φ̄k(i)
ek(i) = dk(i)− φTk (i)uk(i)
ψk(i) = φk(i) + µu∗k(i)ek(i)

end for

B. Diffusion LMS algorithm over Rayleigh fading channel

We extend the above approach by further considering the
fading effects of the inter-sensor wireless channels. In particu-
lar, we develop two different diffusion-based LMS algorithms
by following the aforementioned four-step approach. The two
algorithms differ with respect to the assumed available a-priori
knowledge of the measurement noise power. When the inter-
sensor wireless channels undergo Rayleigh fading, the received
data vectors rk,l(i) at node k are expressed by (2). In this
equation, the channel gains hk,l(i), which have zero mean and
variance σ2

h(k,l), can be constant or slowly time-varying during
the adaptation process. In network modeling, the gains can be
interpreted as random weights applied to the corresponding
entries of the network adjacency matrix, i.e. ck,l(i).

In the first step, if we assume that the channel gains of
neighboring nodes, i.e. hk,l(i) for l ∈ N , are known, their
effects can be removed by the following operation:

ψ̂l(i− 1) = h∗k,l(i)rk,l(i)/|hk,l(i)|2, (12)

which results in

ψ̂l(i− 1) = ψl(i− 1) +
h∗k,l(i)

|hk,l(i)|2
nk,l(i). (13)

Equation (13) has a similar form to that of the received data
in the AWGN channel, i.e (6), except that the noise power
is now changed to σ2

n(k,l)/σ
2
h(k,l). As a result, in the second

step, by applying the BLUE estimator, we obtain

φ̄k(i) =

∑
l∈Nk ψ̂l(i− 1)σ2

h(k,l)σ
−2
n(k,l)∑

l∈Nk σ
2
h(k,l)σ

−2
n(k,l)

. (14)

The third and fourth steps of the procedure, respectively data
fusion and updating the local estimate of the system parameter
vector ψk(i), is identical to that in the AWGN channel case.
The resulting procedure for this scenario with Rayleigh fading
is summarized in Algorithm 2, and identified as Type I.

Algorithm 2 Diffusion LMS for Rayleigh channel Type I
for k = 1 : N do
{Diffusion process}
for l ∈ Nk do

rk,l(i) = hk,l(i)ψl(i− 1) + nk,l(i)
ψ̂l(i− 1) = h∗k,l(i)rk,l(i)/|hk,l(i)|2

end for
{Local parameters update}

φ̄k(i) =
∑
l∈Nk

ˆψ(i−1)σ2
h(k,l)σ

−2
n(k,l)∑

l∈Nk
σ2
h(k,l)

σ−2
n(k,l)

σ2
v(Nk) = 1

Lk

∑
l∈Nk σ

2
v(l)

βk =
σ−2
v(k)

σ−2
v(k)

+σ−2
v(Nk)

φk(i) = βkψk(i− 1) + (1− βk)φ̄k(i)
ek(i) = dk(i)− φTk (i)uk(i)
ψk(i) = φk(i) + µu∗k(i)ek(i)

end for

Algorithm 3 Diffusion LMS for Rayleigh channel Type II
for k = 1 : N do
{Diffusion process}
for l ∈ Nk do

rk,l(i) = hk,l(i)ψl(i− 1) + nk,l(i)
ψ̂l(i− 1) = h∗k,l(i)rk,l(i)/|hk,l(i)|2

end for
{Local parameters update}

φ̄k(i) =
∑
l∈Nk

ˆψl(i−1)σ
2
h(k,l)σ

−2
n(k,l)∑

l∈Nk
σ2
h(k,l)

σ−2
n(k,l)

βk(i) = 1
(1+| exp(−αk(i−1))|2)

φk(i) = βk(i)ψk(i− 1) + (1− βk(i))φ̄k(i)
ek(i) = dk(i)− φTk (i)uk(i)
ψk(i) = φk(i) + µu∗k(i)ek(i)
γk(i) = [ψk(i)− φk(i)] ek(i)βk(i)(1− βk(i))

αk(i) = αk(i− 1) +
µαγ

T
k (i)uk(i)
‖uk(i)‖4

end for



In certain applications, the network may not have access to
measurement noise variances of the sensors. In this scenario,
we can still implement the third step of the proposed approach,
i.e. data fusion by using an adaptive convex combination of
φ̄k(i) and ψk(i − 1). Indeed, these vectors can be viewed
as the coefficients of two adaptive filters, aiming to estimate
the same system parameters. Therefore, the required time-
varying convex coefficient, βk(i), can be obtained based on
the suggested technique in [14]. Making these modifications
to Algorithm 2 (leaving the other steps of the procedure
unchanged), results into Algorithm 3. This new algorithm,
referred to as diffusion LMS Type II, does not require prior
knowledge of the measurement noise variances; however in
compared with Type I, it needs more computational power
and demonstrates slightly lower performance efficiency.

C. Diffusion LMS algorithm with channel indicator

The performance of the proposed diffusion LMS algorithms
can be further improved if we use a channel quality indicator at
each node to limit the impact of ”bad” channels on the overall
performance of diffusion algorithms. Specifically, node k can
monitor the magnitude of its inter-sensor channels at each time
iteration, and discard data transmitted from neighboring nodes
l ∈ Nk in the adaptive process whenever |hk,l(i)| < hmin,
where hmin is a preset threshold. This way, we can avoid
the noise enhancement phenomenon due to bad channels or
deep fading conditions in the network. Numerical results (see
below) show that by implementing a such channel indicator,
the level of residual estimation error in the steady state can
be reduced. Intuitively, excluding the processing of data from
bad channels, reduces the overall computation load of the
algorithm.

IV. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of the devel-
oped algorithms through numerical simulations. In our exper-
iments, the measurement data dk(i) is generated according to
the model given in (1) where the unknown system parameter
vector w ∈ CM has M = 4 components. The entry of
the regressor vector uk(i) = [uk(i), uk(i − 1), . . . , uk(i −
M + 1)]T , is generated by means of the following first order
autoregressive (AR) process equation:

uk(i) = ηkuk(i− 1) + ζkzk(i) (15)

where zk(i) is a spatially independent white Gaussian pro-
cess with zero-mean and unit variance. For given values of
ηk ∈ [0, 1) and ζk, the regressor variance can be computed as
σ2
u,k = ζ2k/(1−η2k). For our experiments, a connected ad-hoc

wireless sensor network with N = 20 nodes is generated as
a realization of a random geometric graph on a unit square,
with maximum normalized communication range of r = 0.4
as shown in Fig. 4. In this approach, nodes are deployed uni-
formly and randomly over [0, 1]2 in two dimensions; an edge
joining two nodes is drawn whenever their Euclidean distance
does not exceed r. To model the inter-sensor wireless links in
the presence of fading, independent random variables hk,l(i)
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with Rayleigh distribution and unit variance are generated,
one for every non-zero entry of the network adjacency matrix.
For simplicity, the values of the channel gains are kept fixed
during the during the adaptation process. The variance of the
zero mean link noise nk,l(i) in (2), i.e. σ2

n(k,l), is calculated
based on the channel SNRs, drawn from a uniform distribution
within the range of [15, 25]dB.

In our experiments, the proposed algorithms are compared
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to the centralized LMS algorithms, which is used as a bench-
mark in the evaluation. The latter refers to a distributed LMS
algorithm that runs incrementally [4] at the central processor
that has access to data from all over the network. The wireless
channels from each node to the central processor are generated
using the same mechanisms as for the distributed algorithms.
The step size µ of distributed and central adaptive algorithms
are constant and chosen as 0.05 and 0.008 respectively.

The MSE performance of the various algorithms are shown
in Fig. 5, where the results are averaged over 200 indepen-
dent runs. Following an initial period of rapid learning, the
centralized LMS with AWGN channels achieves its steady-
state level of residual error faster than the other algorithms.
The centralized LMS with Rayleigh channels also converges
rapidly, however the level of its residual estimation error sig-
nificantly increases due to fading effect in wireless channels.
It can be also observed that the proposed diffusion algorithms
converge to nearly the same steady state level as the centralized
LMS algorithm, although the speed of convergence is reduced.
Indeed, the faster convergence of the centralized algorithm
is because of the extensive processing of the data collected
from all over network at each time i, while the volume of
data used by the diffusion LMS at node k is restricted by
the number of its neighbors, Lk. The results also indicate that
diffusion LMS Type I reaches a slightly lower steady state
error value than Type II. Similar conclusions can be made from
Fig. 6, which shows the steady-state MSE performance of the
diffusion LMS algorithms for the entire network. Again, the
diffusion LMS algorithm in AWGN channels shows superior
performance than diffusion LMS in Rayleigh channels.

Finally, Fig. 7 shows the results of implementing channel
quality indicators on the performance of the developed algo-
rithms. The results suggest, in this scenario, the algorithms
can attain a significantly smaller level of residual error.

V. CONCLUSION

In this paper, we formulated new distributed LMS adaptive
algorithms that can operate under the detrimental effects
of channel fading and noise in wireless sensor networks.
The proposed algorithms are diffusion-based and obtained
as a combination of diffusion LMS and linear estimation
approaches such as best linear unbiased estimation (BLUE).
In particular, the developed algorithms estimate and track the
unknown system parameters at each node, by processing the
sensor current measurement, the received data from the neigh-
boring nodes, and exploiting the channel state information and
statistical data of their neighbors. These algorithms work based
on diffusion strategy where nodes exchange their information
with only a single-hop transmission step in their communi-
cation range. Simulation results demonstrate the effectiveness
of the proposed algorithms, and show their satisfactory per-
formance when compared with the costly centralized adaptive
approaches.
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