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Abstract—In this paper, we propose an adaptive blind reduced-
rank beamforming algorithm based on Krylov-subspace (KS) techniques
and widely linear (WL) processing for non-circular signals. In contrast
to the conventional WL processing approach, the properties of the
augmented covariance matrix are exploited to derive a new structured WL
beamforming scheme based on the generalized sidelobe canceler (GSC)
structure. We develop a recursive least square (RLS) algorithm according
to the constrained constant modulus (CCM) criterion to update the
reduced-rank beamformer so obtained. A detailed signal-to-interference-
plus noise ratio (SINR) analysis and a computational complexity analysis
are carried out. Simulation results show that the proposed algorithm
outperforms its linear counterpart and the full-rank algorithms, achieving
the best convergence performance among all the analyzed methods with
a relatively low complexity.1

Keywords—Widely linear, Krylov-subspace, beamforming, constrained
constant modulus

I. INTRODUCTION

Adaptive beamforming techniques can discriminate signals with

different spatial characteristics and have been widely applied in

various areas such as radar, sonar, and wireless communication

systems [1]–[3]. In many practical situations, the received vector

r is assumed to be second-order circular with its complementary

covariance matrix Rc = E{rrT } = 0, and for this reason, only

the covariance matrix R = E{rrH} is utilized in conventional

schemes. However, when the received vector is derived from non-

circular modulated signals, such in the case of binary phase shift

keying (BPSK) modulation, Rc is no longer a zero matrix. Under

such circumstances, a more general estimation scheme, which takes

into consideration both the received vector r and its conjugate r∗,

is needed to obtain superior performance. Referred to as widely

linear (WL) beamformer, this more general scheme can lead to higher

signal-to-interference-plus noise (SINR) or smaller mean square error

(MSE) in the estimation of a desired signal [4].

Blind algorithms without any requirements for training symbols

can significantly improve the information capacity of communication

systems employing antenna arrays. The most popular design criteria

for adaptive blind beamformers are the constrained minimum variance

(CMV) [5], [6] and the constrained constant modulus (CCM) [7]

due to their effectiveness and simplicity. The CCM criterion, which

minimizes the mean deviation of the squared output from constant

values, exploits additional information about the underlying signal

constellation, and achieves superior performance as compared with

the CMV criterion.

However, in a large-scale antenna array system with numerous

filter coefficients to be estimated, the high computational complexity
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the Central Universities, and the National High Technology Research and
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and the slow convergence speed of adaptive blind beamforming

algorithms often prohibit the application of full-rank processing.

Moreover, WL processing doubles the size of the received data vector

which further motivates the use of reduced-rank techniques [8]–[11].

Various WL-based reduced-rank algorithms have been introduced in

the previous studies, including the eigen-decomposition method [12],

the multi-stage Wiener filter (MSWF) [13], and the auxiliary vector

filtering (AVF) [14]. Both the MSWF and AVF methods involve the

construction of the low rank Krylov-subspace (KS), which has shown

excellent performance in several applications and can be combined

with different design criteria.

In this paper, a new adaptive blind reduced-rank WL beamforming

algorithm based on the KS technique is proposed which operates

in the generalized sidelobe canceller (GSC) structure [15], [16]. We

develop a recursive least square (RLS) algorithm according to the

CCM criterion to update the reduced-rank filter, which is referred to

as the direct WLCCM-KS-RLS. In order to reduce the computational

complexity of the conventional realization scheme based on the

stacking of the received data and its complex conjugate, the structure

of the augmented covariance matrix is taken into consideration as

prior information to devise a structured WLCCM-KS-RLS. A theo-

retical analysis of the achievable SINR of the WLCCM-KS scheme

and its linear counterpart is given. In addition, we investigate the

computational complexity of the proposed algorithm and compare it

with other existing reduced-rank algorithms. Simulation results show

that the proposed algorithm outperforms its linear counterpart and the

full-rank algorithms, achieving the best convergence performance and

steady-state SINR among all the analyzed methods with a relatively

low complexity.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Let us consider that K independent user signals, indexed by

k = 0, 1, ...,K − 1, impinge on a large-scale uniform linear array

(ULA) system equipped with M(K ≤ M) sensor elements. The users

are assumed to be in the far field with directions-of-arrival (DOAs)

θ0, ..., θK−1. The received M ×1 complex vector at the ith snapshot

can be modeled as

r(i) =

K−1∑
k=0

bk(i)a(θk) + n(i), i = 1, ..., N (1)

where bk(i) denotes the source signal for user k which takes value

from the set {±1} with equal probability. The vector a(θk) denotes

the normalized M × 1 signal steering vector, which is given by

a(θk) =
1√
M

[1, e
−j2π

d cos θk
λc , ..., e

−j2π
(M−1)d cos θk

λc ]T , (2)

where λc is the wavelength and d = λc
2

is the inter-element distance

of the ULA. In (1), n(i) ∈ C
M×1 is the white circular complex noise
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vector whose components are independent and identically distributed

random Gaussian variables with zero-mean and variance σ2
n. Without

loss of generality, we assume that source k = 0 is the desired user

while the remaining K− 1 sources are interfering users. Our interest

is focused on detection problems where the large-scale antenna array

is used to extract information from the desired user with a known

normalized steering vector a(θ0).

We define w(i) = γa(θ0)−Bwgsc(i) as the weight vector of the

full-rank beamformer with the GSC structure [15], where γ is a real-

valued scalar to guarantee the convexity of the optimization problem

[9], and B is the signal blocking matrix, which spans a subspace

that is orthogonal to the steering vector a(θ0) [17]. Consequently,

the CCM beamformer is converted into an unconstrained optimization

problem with the following cost function:

JCM (wgsc(i)) = E{(|y(i)|2 − 1)2}, (3)

where y(i) = (γa(θ0)−Bwgsc(i))
Hr(i) is the output of the GSC

beamformer, and wgsc(i) is a filter to be designed.

However, for a large-scale antenna array system with large

dimension M , the convergence speed for the full-rank blind adaptive

beamformer is typically rather slow, and we resort to reduced-rank

techniques to solve this problem.

III. KRYLOV-SUBSPACE BASED REDUCED-RANK SCHEME WITH

THE GSC STRUCTURE

The reduced-rank beamforming receiver reduces the number of

adaptive filter coefficients by projecting the received signal onto

a lower dimensional subspace. An illustration of the reduced-rank

scheme operating in the GSC structure is shown in Fig. 1. As can

be seen, for the auxiliary (i.e., bottom) branch, the received vector

r(i) is successively processed by the signal blocking matrix B, the

transformation matrix Tr , and the reduced-rank filter w̄gsc(i) to

compute the unconstrained output. The auxiliary branch is devised

to recover the interference-plus-noise component which has passed

through the top branch and then cancel it.

For the construction of the transformation matrix Tr , we utilize

the KS technique. The standard rank-D (1 ≤ D � M ) KS can be

represented by

KD = Span{a(θ0),Ra(θ0), ...,R
D−1a(θ0)}, (4)

where R = E{r(i)rH(i)} denotes the array covariance matrix [18].

The dth projection vector Rd−1a(θ0) (2 ≤ d ≤ D), maximizes the

magnitude of the correlation between its output (Rd−1a(θ0))
Hr(i)

and the output of the previous projection vector (Rd−2a(θ0))
Hr(i).

Considering the GSC structure, the product between the first basis

vector and the blocked array signal is zero, that is aH(θ0)B
Hr(i) =

0. Noting this, we define a modified rank-D transformation matrix

that is well-suited to the GSC structure via the following expression

Tr = [Ra(θ0),R
2a(θ0), ...,R

Da(θ0)]
.
= [ρ1,ρ2, ...,ρD],

(5)

which can be formed iteratively with ρ1 = Ra(θ0), and recursively

applying ρk = Rρk−1. The first projection vector maximizes the

magnitude of the correlation between its output (Bρ1)
Hr(i) and the

output of the top branch γaH(θ0)r(i). Similar optimization problem

has appeared in [11], [10]. Thus, the reduced-rank estimation can cap-

ture most, in the maximum correlation sense, of the interference-plus-

noise signal that has passed over the top branch. Besides, the reduced-

rank scheme with the GSC structure requires the concatenation of

the blocking matrix B and the transformation matrix Tr ∈ C
M×D ,

and accordingly, the blocking matrix B deserves proper design.

One suitable method is the application of the correlation subtractive

structure (CSS) [19], where

B = I − a(θ0)a
H(θ0) ∈ C

M×M . (6)

In this work, we use the CSS structure of the blocking matrix and

directly cascade it with the reduced-rank transformation matrix Tr .

We note that, the computational complexity of the product Br(i) is

restricted to O(M) instead of O(M2) for a general matrix B.

After these operations, the received vector r(i) is mapped into a

lower dimensional version termed the reduced-rank vector, which is

described by

r̄(i) = (BTr)
Hr(i). (7)

Finally, the beamformer output is obtained as the difference y(i) =
γaH(θ0)r(i)−w̄H

gsc(i)r̄(i), where w̄gsc(i) is the reduced-rank filter

to be designed.

�� �� ��
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� ��� �
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Fig. 1: Reduced-rank beamforming scheme with the GSC structure

IV. PROPOSED BLIND ADAPTIVE WIDELY LINEAR

REDUCED-RANK ALGORITHM

For many applications with non-circular sources, the second-

order statistics are fully described by both the covariance matrix

R = E{rrH} and the complementary covariance matrix Rc =
E{rrT } �= 0. In order to exploit the additional information contained

in Rc , we combine the received signal r with its complex conjugate

r∗ into an augmented vector r̃ using a bijective transformation T
shown below

r
T−→ r̃ : r̃ =

1√
2
[rT , rH ]T ∈ C

2M×1. (8)

In the WL case, the size of the augmented vector obtained by (8)

is twice that of the observed signal. It is therefore crucial to take

full advantage of the reduced-rank signal processing techniques to

achieve a faster convergence, robustness to interference and a lower

complexity.

The block diagram of the WLCCM reduced-rank beamforming

algorithm is similar to Fig. 1. The difference lies in that all the

elements including r(i),a(θ0),B,Tr are extended to their WL

variants r̃(i), ã(θ0), B̃, T̃r . The augmented vectors r̃(i) and ã(θ0)
are obtained by (8), whereas B̃ and T̃r are developed by substituting

their conventional components r(i), a(θ0) in expressions (6) and

(5) for the augmented ones r̃(i) and ã(θ0), respectively. However,

this direct WL scheme does not fully exploit the structure of B̃ and

T̃r , and consequently, the procedure of cascading them to obtain

the reduced-rank vector requires a large number of operations. In

this section, we employ the property of the augmented covariance

matrix and propose a structured WLCCM reduced-rank beamforming

scheme. Furthermore, an analysis of the proposed algorithm is given.

A. The proposed WLCCM-KS-RLS algorithm

Development of the proposed WLCCM-KS-RLS beamforming

algorithm involves two steps, that are: the construction of reduced-

rank vector r̄(i) and the design of an RLS algorithm to iteratively
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update the reduced-rank filter w̄gsc(i). In the first step, we take

advantage of the structure of the WL covariance matrix to reduce the

computational complexity. Firstly, the augmented covariance matrix

can be written as

R̃ =
1

2

[
R Rc

R∗
c R∗

]
. (9)

In practice, R and Rc are often estimated by the time average of N
received snapshots, that is

R̂(i) =
1

N

N−1∑
n=0

r(n)rH(n) R̂c(i) =
1

N

N−1∑
n=0

r(n)rT (n). (10)

Let us rewrite the augmented steering vector as

ã(θ0) = T {a(θ0)} =
1√
2
[aT (θ0),a

H(θ0)]
T , (11)

then, the WL transformation matrix can be written as

T̃r(i) = T {P (i)} .
= T {[ρ̄1(i), ρ̄2(i), ..., ρ̄D(i)]}, (12)

where we define ρ̄1(i) =
1
2
(R̂(i)a(θ0)+R̂c(i)a

∗(θ0)) and ρ̄k(i) =
1
2
(R̂(i)ρ̄k−1(i) + R̂c(i)ρ̄

∗
k−1(i)), for k = 2, ..., D. In that sense,

P (i) ∈ C
M×D contains the same information as T̃r(i) ∈ C

2M×D .

In addition, the blocking matrix can be partitioned into four sub-

matrices

B̃
.
=

[
B1 B2

B∗
2 B∗

1

]

=

[
I − a(θ0)a

H (θ0)
2

−a(θ0)a
T (θ0)

2

(−a(θ0)a
T (θ0)

2
)∗ (I − a(θ0)a

H (θ0)
2

)∗

]
.

(13)

After further matrix manipulations, the reduced-rank vector can be

rewritten as

r̄(i) = (B̃T̃r(i))
H r̃(i)

= R{(B1P (i) +B2P
∗(i))Hr(i)},

(14)

where R{} denotes the real part of a value. The block diagram is

depicted as Fig. 2.
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Fig. 2: Proposed WL reduced-rank scheme with the GSC structure.

Then, we derive the structured RLS algorithm for the reduced-

rank filter. The reduced-rank weighting vector w̄gsc(i) is optimized

by minimizing the unconstrained least squares (LS) cost function

JCM (w̄gsc(i)) =
i∑

n=1

αi−n(|y(n)|2 − 1)2, (15)

where |y(n)|2 = y∗(n)(γR{aH(θ0)r(n)} − w̄H
gsc(i)r̄(n)), α is a

forgetting factor chosen as a positive scalar, close to, but less than 1.

Letting x̃(n) = y∗(n)r̄(n) and d̃(n) = γy∗(n)R{aH(θ0)r(n)}−1,

(15) can be rewritten as

JCM (w̄gsc(i)) =

i∑
n=1

αi−n[d̃(n)− w̄H
gsc(i)x̃(n)]

2. (16)

TABLE I: The proposed WLCCM-KS-RLS algorithm

Initialization with a specified rank D:
Q̃−1(0) = δID, w̄gsc(0) = [1, 0, ..., 0]T , α = 0.998

For the ith snapshot i = 1, 2, ..., N

Compute R̂(i) and R̂c(i) according to (10)

Calculate P (i) according to (12)

r̄(i) = R{(B1P (i) +B2P ∗(i))Hr(i)}
y(i) = γR{aH(θ0)r(i)} − w̄H

gsc(i− 1)r̄(i)

x̃(i) = y∗(i)r̄(i), d̃(i) = γy∗(i)R{aH(θ0)r(i)} − 1

Update the reduced-rank coefficient w̄gsc according to (18)-(21).

By taking the gradient of (16) with respect to w̄∗
gsc(i) and equating

it to zero, after further manipulations we obtain

w̄gsc(i) = Q̃−1(i)p̃(i), (17)

where Q̃(i) =
i∑

n=1

αi−nx̃(n)x̃H(n) and

p̃(i) =
i∑

n=1

αi−nx̃(n)d̃∗(n).

To avoid the matrix inversion and reduce the complexity, we apply

the matrix inversion lemma to (17), and obtain the following recursive

expression

w̄gsc(i) = w̄gsc(i− 1) + k̃(i)ξ̃∗(i), (18)

where

k̃(i) =
Q̃−1(i− 1)x̃(i)

α+ x̃H(i)Q̃−1(i− 1)x̃(i)
, (19)

ξ̃(i) = d̃(i)− w̄H
gsc(i− 1)x̃(i), (20)

Q̃−1(i) = α−1(Q̃−1(i− 1)− k̃(i)x̃H(i)Q̃−1(i− 1)). (21)

Based on (18)-(21), we obtain the reduced-rank filter updating pro-

cedure for the proposed adaptive WLCCM-KS-RLS algorithm with

the GSC structure. The algorithm is summarized in Table I.

With this new structured scheme, we need not use the bijective

transform and all the calculations are processed with vectors of

lengths less than or equal to M , thereby significantly reducing the

computational complexity as compared to the conventional direct WL

scheme.

B. Analysis of the proposed algorithm

1) SINR analysis: From the block diagram shown in Fig. 2, we

explicitly note that the WL reduced-rank vector r̄(i) is real-valued.

Thus, the filter coefficient w̄gsc(i) and the output of the filter y(i)
are also real-valued. Then the optimum augmented WL weighting

vector w̃o = γã(θ0) − B̃T̃r(i)w̄gsc,o is conjugate symmetric,

and can be expressed as w̃o = T {wo,WL}, which means that

wo,WL ∈ C
M×1 contains all the information of w̃o ∈ C

2M×1.

The corresponding optimal weight vector wo,WL minimizes the cost

function E{(|R{y(i)}|2−1)2}, where y(i) = wHr(i). The optimum

output SINR can be equivalently expressed as

SINRWL =
E{|R{wH

o,WLs}|2}
E{|R{wH

o,WLv}|2}

=
γ2

E{|R{wH
o,WLv}|2}

,

(22)

7



TABLE II: Real operations of reduced-rank algorithms per snapshot

Algorithms Real multiplications Real additions
Structured

WLCCM-KS-RLS
8DM2 + 12M2 + 6DM

+18M + 3D2 + 5D + 5

8DM2 + 8M2 + 2DM

+16M + 2D2 + D − 4

Direct
WLCCM-KS-RLS

16DM2 + 24M2 + 8DM

+32M + 3D2 + 5D + 1

16DM2 + 16M2

+4DM + 24M + 2D2 − 3

WL-AVF 32DM2 + 24M2

+40DM + 8M + 4D

32DM2 + 16M2

+32DM − 4D

LCCM-KS-RLS 4DM2 + 6M2 + 4DM

+12M + 10D2 + 20D + 2

4DM2 + 4M2 + 2DM

+12M + 8D2 + 12D − 3

L-AVF 8DM2 + 6M2

+20DM + 4D

8DM2 + 4M2

+16DM − 4D

where s and v denote the desired signal and the interference-plus-

noise component, respectively. On the one hand, the optimum solution

of the linear algorithm is defined as wo,L, and the corresponding

optimum SINR is given by

SINRL =
γ2

E{|wH
o,Lv|2}

. (23)

According to (22), if we substitute wo,WL for wo,L, the resulting

SINR′ = γ2

E{|R{wH
o,L

v}|2} ≤ SINRWL. On the other hand, the

operation R{} nearly reduces the interference-plus-noise power by

half, that is SINR′ ≈ 2SINRL. Consequently, the optimum SINR of

the WL processing exhibits an almost 3dB gain over that of the linear

one [14].

2) Complexity analysis: We investigate the computational com-

plexity of the proposed WLCCM-KS-RLS algorithm with the GSC

structure, where the complexity is evaluated in terms of the number

of real additions and real multiplications for each snapshot of size

M . We compare the complexity of the proposed algorithms with that

of the conventional WL processing scheme, the WL-AVF reduced-

rank algorithm [14] and their linear counterparts, referred to by the

acronyms LCCM-KS-RLS and L-AVF, respectively. The complexity

figures are listed in Table II. In particular, given the rank D = 2 and

M = 32, the total number of operations (real multiplications plus real

additions) per snapshot for the proposed structured WLCCM-KS-RLS

algorithm is 54881, whereas the direct scheme and WL-AVF require

109084 and 176896 operations, respectively. In general, we can verify

that the proposed structured WLCCM-KS-RLS algorithm reduces the

computational complexity compared with the WL-AVF algorithm and

further saves nearly half of the operations with respect to the direct

scheme.

V. SIMULATIONS

In this section, the SINR performance of the proposed WLCCM-

KS-RLS algorithm and that of other analyzed schemes is evaluated.

The output SINR of the WL processing is given by

SINR(i) =
w̃H(i)R̃sw̃(i)

w̃H(i)R̃inw̃(i)
, (24)

where R̃s and R̃in denote the augmented covariance matrice of

the desired signal and the interference-plus-noise in the observation

space, respectively. In our simulations, we consider a large-scale ULA

system equipped with M = 32 sensor elements. The DOA of the

desired user is θ0 = 50◦ and the whole interfering signals impinge

on the array with DOAs evenly distributed on both sides of the

desired user. All the users are assumed to have equal power. The

performance of the reduced-rank algorithm depends on the specific

rank D. Interestingly, it has been observed that in various scenarios

that with the KS based reduced-rank technique, the optimal rank D
does not scale significantly with the number of users K and the length

of the observation vector M . For a blind algorithm, generally D ≤ 5
can be chosen [10]. In our simulations, an appropriate value of the

rank D = 2 was determined experimentally so as to ensure that all

the algorithms achieve a good performance for a fair comparison. All

the results given below are averaged over 100 simulation runs.

Fig. 3(a) illustrates the output SINR performance against the

number of snapshots N . There are 10 interferers with DOAs of

[40◦, 30◦, 20◦, 10◦, 0◦, 60◦, 70◦, 80◦, 90◦, 100◦] (the DOA separa-

tion is 10◦) and the input SNR is set as 10 dB. The performance

of the optimum minimum variance distortionless response (MVDR)

filter is also given for comparison. Obviously, the proposed WLCCM-

KS-RLS algorithm exhibits a faster convergence and a higher steady-

state SINR compared with the WL-AVF algorithm and the full-

rank schemes. Basically, it can be observed that the WL algorithms

outperform their linear counterparts. This can be explained by the fact

that the augmented vectors provide more information. Moreover, the

SINR performance of the CCM-based full-rank algorithm is superior

to that of the CMV-based one.

In Fig. 3(b), we show the steady-state SINR performance as a

function of the input SNR, where the simulation scenario is the same

as that of Fig. 3(a). Generally, the SINR increases monotonically with

the input SNR, and our proposed algorithm has a better performance

with a smaller gap from the optimum MVDR results. The conclusion

is consistent with the results in Fig. 3(a). Besides, the WL algorithms

obtain an additional gain compared with the conventional linear

algorithms.
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Fig. 3: Output SINR performance versus: (a) number of snapshots;

(b) input SNR.

VI. CONCLUSION

In this paper, we proposed a novel blind reduced-rank WL beam-

forming receiver based on the KS technique. Inspired by the CCM

criterion, an RLS algorithm was developed for adaptive implementa-

tion of the new beamformer within an extended GSC structure. The

proposed scheme exploits the structure of the augmented covariance

matrix, therefore can reduce the computational complexity compared

with conventional direct WL processing. The performance analysis in

terms of output SINR and also the computational complexity analysis

of the new algorithms were carried out. Simulation results have shown

that the proposed algorithm outperforms the existing WL reduced-

rank and full-rank beamforming algorithms in terms of convergence

speed and steady-state SINR.

8



REFERENCES

[1] A. B. Gershman, E. Nemeth, and J. F. Bohme, “Experimental perfor-
mance of adaptive beamforming in a sonar environment with a towed
array and moving interfering sources,” IEEE Trans. Signal Process.,
vol. 48, no. 1, pp. 246-250, Jan. 2000.

[2] S. Anderson, M. Millnet, M. Viberg, and B. Wahlberg, “An adaptive
array for mobile communication systems,” IEEE Trans. Vehi. Technol.,
vol.40, pp. 230-236, Feb. 1991.

[3] J. R. Guerci, J. S. Goldstein, and I. S. Reed, “Optimal and adaptive
reduced-rank STAP,” IEEE Trans. Aerosp. Electron. Syst., vol. 36, no.
2, pp. 647-663, Apr. 2000.

[4] B. Picinbono and P. Chevalier, “Widely linear estimation with complex
data,” IEEE Trans. Signal Process., vol. 43, no. 8, pp. 2030-2033, Aug.
1995.

[5] Otis Lamont Frost, “An algorithm for linearly constrained adaptive array
processing,” Proc. IEEE, vol. 60, no. 8, pp. 926-935, Aug. 1972.

[6] M. Honig, U. Madhow, and S. Verdu, “Blind adaptive multiuser
detection,” IEEE Trans. Inf. Theory, vol. 41, no. 4, pp. 944-960, Jul.
1995

[7] M. Gu and L. Tong, “Geometrical characterizations of constant mudulus
receivers,” IEEE Trans. Signal Process., vol. 47, no. 10, pp. 2745-2756,
Oct. 1999.

[8] X. Wang and H. V. Poor, “Blind multiuser detection: A subspace
approach,” IEEE Trans. Inf. Theory, vol. 44, pp. 677-690, Mar. 1998

[9] R. C. de Lamare, M. Haardt, and R. Sampaio-Neto, “Blind adaptive
constrained reduced-rank parameter estimation based on constant mod-
ulus design for CDMA interference suppression,” IEEE Trans. Signal
Process., vol. 56, no. 6, pp. 2470-2482, Jun. 2008.

[10] M. L. Honig and J. S. Goldstein, “Adaptive reduced-rank interference
suppression based on the multistage Wiener filter,” IEEE Trans. Com-
mun., vol. 50, no. 6, pp. 986-994, Jun. 2002.

[11] D. A. Pados, G. N. Karystinos, “An iterative algorithm for the compu-
tation of the MVDR filter,” IEEE Trans. Signal Process., vol. 49, No.
2, February, 2001.

[12] P. J. Schreier and L. L. Scharf, “Second-order analysis of improper
complex random vectors and processes,” IEEE Trans. Signal Process.,
vol. 51, no. 3, pp. 714-725, Mar. 2003.

[13] N. Song, R. C. de Lamare, M. Haardt, and M. Wolf, “Adaptive widely
linear reduced-rank interference suppression based on the multi-stage
wiener filter,” IEEE Trans. Signal Process., vol. 60, no. 8, pp. 4003-
4016, Aug. 2012.

[14] N. Song, J. Steinwandt, L. Wang, R. C. de Lamare, and M. Haardt,
“Non-data-aided adaptive beamforming algorithm based on the widely
linear auxiliary vector filter,” Proc. Int. Conf. Acoustics, Speech, and
Signal Processing(ICASSP 2011), Prague, Czech Repulic, May 2011.

[15] Lloyd J. Griffiths and Charles W. “Jim An alternative approach to
linearly constrained adaptive beamforming,” IEEE Trans. Antennas
Propagat., vol. AP-30, no. 1, pp. 27-34, Jan. 1982.

[16] S. Haykin, Adaptive Filter Theory, 4th ed. Englewood Cliffs, NJ:
Prentice-Hall, 2002.

[17] Xu, Z. and Michail, K. T, “Blind adaptive algorithms for minimum
variance CDMA receivers,” IEEE Trans. Commun., vol. 49, no. 1, pp.
180-194, 2001.

[18] M. L. Honig and W. Xiao, “Adaptive reduced-rank interference suppres-
sion with adaptive rank selection,” Proc. MILCOM, vol. 2, pp. 747-751,
2000.

[19] S. Werner, M. With, V. Koivunen, “Householder multistage Wiener filter
for space-time navigation receivers,” IEEE Trans. Aerosp. Electron.
Syst., vol. 43, no. 3, pp. 975-988, Jul. 2007.

9


