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Abstract- Multicarrier modulation techniques such as dis-
crete multitone (DMT) have been used for reliable digital data
transmission in various applications, i.e. in digital subscriber
line (DSL) and Wi-Fi products. It is a well known fact that
the IFFT/FFT pair in DMT provides poor spectral selectivity
due to the insufficient sidelobe attenuation of the subchannel
frequency response. To remedy this problem, we propose to
use perfect reconstruction DFT filter banks (achieving perfect
inter-symbol interference cancellation) instead of DMT. In this
case, spectral selectivity can be greatly improved. Equalization
is performed via a zero-padding technique combined with QR
factorization of the channel matrix. Experiments indicate that
the proposed transceiver exhibits a significant improvement in
terms of achievable bit rates in an environment where narrow
band noise dominates.

I. INTRODUCTION

Multicarrier modulation (MCM) is currently used for data
transmission in many applications such as digital subscriber
line (DSL) and Wi-Fi products for Internet access. In essence,
MCM divides the available channel bandwidth into M sub-
channels through the use of M narrow band subcarriers,
each of them transmitting different portions of the input bit
stream. The MCM scheme deployed in the above-mentioned
applications is referred to as discrete multitone (DMT) mod-
ulation'. In DMT, an inverse fast Fourier transform (IFFT)
is employed to modulate a group of QAM symbols, possibly
from different constellations. Due to the IFFT, DMT suffers
from poor subchannel spectral selectivity since the sidelobes
of the subchannel frequency response are poorly attenuated. A
narrow band noise (such as HAM radio interference) can thus
cause notable damage, since adjacent subchannels of the af-
fected subcarrier are more likely to pick up this interference as
well. Poor spectral selectivity can also pose a serious problem
in applications where spectral power allocation requirements
must be met precisely.

To improve spectral selectivity, more efficient alternatives
to the IFFT in DMT modulation should be considered. In this
respect, the use of filter banks appears particularly promis-
ing [1]-[4]. While there exist many types of filter banks,
contrary to the work in [4], we restrict our attention to
a class of computationally efficient filter banks, the DFT-
modulated filter bank [1]-[3]. In [1], [2], the resulting DFT
filter bank transceiver does not achieve complete inter-symbol

'In wireless communications, DMT is also known as orthogonal frequency
division multiplexing (OFDM).

interference (ISI) cancellation (or, equivalently, they are not
characterized by the perfect reconstruction (PR) property).
To compensate, decision-feedback equalizers (DFE) must be
employed. These equalizers entail a level of post-processing
complexity normally not found in DMT, where only simple
one-tap frequency-domain equalizers and a cyclic prefix are
required to mitigate ISI. More recently, Phoong et al. have pro-
posed a design method for DFT filter bank transceivers based
on ISI minimization [3]. However, ISI minimization does not
necessarily yield ISI-free systems, and the PR property may
not hold.
The main objective of this paper is to investigate the use

of PR DFT filter banks in transceivers for DSL-like systems.
The aim is to provide better spectral selectivity to combat
impairments such as narrow band noise. As explained in this
paper, by using the PR criterion, DFE are unnecessary, and
a simple equalization scheme analogous to that in DMT

can be employed. In contrast with [3], the design method
introduced in this paper guarantees that the PR property
is maintained. This ensures complete ISI cancellation as in
DMT. Results shown in this paper indicate that the relative
improvement in terms of achievable bit rates is very significant
when a narrow band noise contaminates the system. However,
improving spectral selectivity implies a penalty in bandwidth
utilization. In cases where noise is wide band and weak, DMT
might be preferable.

This paper is organized as follows. In Section II, we
present a method to design perfect reconstruction DFT filter
banks, assuming an ideal channel. This assumption is lifted
in Section III, and an equalization scheme based on zero-
padding and the QR factorization is described. In Section IV,
experimental results are shown, and a conclusion is given in
Section V.

II. PERFECT RECONSTRUCTION DFT FILTER BANKS

A filter bank transceiver is illustrated in Figure 1; the
equalization scheme is not shown on this figure and will be
discussed in Section III. Parameters N and M represent the
upsampling factor and the number of subcarriers2, respectively.
In this paper, we consider redundant filter banks, where N >
M. The transmitted and received symbols are respectively
denoted by am[n] and bm[n], m = 0,...,M- 1. The

21n the DMT literature, a subcarrier is often called a "tone".
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Fig. 1. A filter bank transceiver.
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Fig. 2. Polyphase representation of a filter bank transceiver.

symbols am [n] come from QAM constellations of possibly
different sizes, which are determined by a bit loading algo-
rithm. The channel is modelled by a finite impulse response
(FIR) filter of degree Q, i.e. C(z) = EQ c[n]z-n, and
additive noise w[n], which is not necessarily white. Finally,
Fm(Z) = ED-1 fm[n]z-n and Hm (z) = (D-1 hm[n]Zn,
m = O, ... , M -1 represent the synthesis and analysis filters,
respectively. Note that, for convenience, Hm (z) is noncausal.
Causality can be retrieved simply by adding a delay of D- 1
samples.

In a DFT filter bank, the filters Fm (z) and Hm (z) are
derived from single prototype filters F(z), H(z), respectively,
using a complex modulation, i.e.

Fm(z) = F(zWm)
Hm(z) = H(zW-m),

where W = J-j21M . Hence, in a DFT filter bank transceiver,
only two filters, F(z) and H(z), have to be designed instead of
2M filters. This simplifies the design problem considerably. In
addition, the DFT modulation can be implemented efficiently
using the FFT algorithm as will be discussed in Section III. To
ensure that a real signal u[n] is obtained at the channel input,
am [n] = a* _ [n] for m = M2+ 1, .. ., 1, and "QAM"
symbols aO [n] and aM/2 [n] are chosen from a constellation of
real symbols.

It is very convenient to use the polyphase representation to
simplify the analysis of DFT filter banks. In fact, by defining,

N-1

F. (Z) = ,z kGk,m(ZN)
k=O
N-1

H. (Z) = ZkSmn,k(ZN),
k=O

where3 Gk,m (Z) = yD/N-1 fm [Nn + k]z-n and Sk,m (Z)
ZDIN 1 hm[Nn + k]zn, the DFT filter bank transceiver can
be represented, with the help of the noble identities, as in
Figure 2 [5]. G (z) and S(z) are N xM and Mx N polyphase
matrices whose entries are given by [G(Z)lk,m = Gk,m(z) and
[S(Z)lm,k = Sm,k(z), respectively.
For the rest of this section, let us assume that the channel

is ideal, i.e. C(z) = 1 (this assumption will be lifted in
Section III). In the absence of noise (i.e. w[n] = 0), the overall

3We assume, without loss of generality, that D in a multiple of N.

transfer function of the DFT filter bank transceiver, from the
transmitter to the receiver, is equal to

To (z) = S (z)G (z). (1)

For errorless data transmission, the transfer function should
be equal to the M x M identity matrix, i.e. To(z) = IM.
A system satisfying the above property is called a perfect
reconstruction (or PR) system. Note that DMT, essentially
composed of an IFFT/FFT pair, is a PR system.
PR systems can be designed using paraunitary matrices. A

paraunitary matrix G(z) satisfies [5]

G(z)G(z) = IM, (2)
where G (z) = GH(l/z*). Here, the tilde operator represents
paraconjugation. For such systems, the analysis filter bank is
set to S(z) = G (z).

In this work, we force G (z) to be paraunitary so that
the transceiver system is characterized by the PR property.
Paraunitaryness can be enforced by noting that, since G(z) is
a polyphase matrix of a DFT filter bank, it can be factorized
as follows [6]

G(z) = [IN Z lIN ... z L+lIN] X

Uo (ZL) O . .. O

UN (ZL) ... °

O O0 ... Up-1(
A U(z)W*,

[IM-
I'M.W*

_-IM-_

(3)

where Uk(z) = yD_P 1f[Pn + k]z-n is the P-fold
polyphase component of F(z) and W is the M x M DFT
matrix, i.e. [W]k,m = (1/M)Wkm. The parameter P is
defined as the least common multiple between M and N, and
L = P/N. From (2) and (3), it is easy to prove that G (z)
is paraunitary if and only if U(z) is paraunitary. Depending
on the relationship between M and N, U(z) can take three
different forms4 [6]. Each form can then be parametrized by
the factorization theorem of paraunitary matrices [5]. Such
parametrization will be denoted by the function p,

x P U (z),

4Note that when M = N, the only possible choice for U(z) is the identity
matrix IM. This situation is that of DMT, where the "prototype filter" is a
rectangular window. Redundancy (i.e. N > M) allows for PR non-rectangular
windows.
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where x is a vector of real numbers of a proper size. Fur-
thermore, according to (3) a correspondence between the pro-
totype filter F(z) (via its polyphase components Uk(z), k =
0, ... , P-1) and the matrix U(z) can be established. In other
words, to each paraunitary matrix U(z), there corresponds a
prototype filter F(z) and vice versa. This correspondence can
be represented by the mapping q as

U(z) q )F(Z)
In order to provide good spectral selectivity, among all

possible paraunitary matrices, it is desirable to select the
one that minimizes the stopband energy. The prototype filter
design problem can thus be cast as the following unconstrained
optimization problem

x= argrminJM IF(ejw;x dw. (4)

filters might be obtained. We propose instead to use zero-
padding and the QR factorization, as explained below, for
equalization purposes. The key is to choose an upsampling
factor such that N > M + Q.
Whenever N > M + Q is satisfied, the channel matrix

can be partitioned as C(z) = [Co Cj(z)], where Cu is an
N x (N -Q) matrix of real numbers and C1 (z) is an N x Q
polynomial matrix [7]. Hence, we can formulate (6) as

T'(z) = S(z)E(z) [Co Cl(z)] G(z). (7)

C1 (z) can be cancelled by transmitting a block of Q zeros
after each block of N -Q time-domain samples. This is
equivalent to set the last Q rows of G(z) to zeros, i.e.
G(z) = [Go(z) 0] T, where 0 denotes a matrix of zeros
of an appropriate size. The transfer function (7) can now be
written as

where F(z; x) = q (p(x)). This approach is similar to the one
suggested in [4]. Note that it is not necessary to constrain the
passband of the prototype filter to be flat to obtain a good
frequency response. Due to the paraunitaryness of G(z), one
can show, using the power complementary property, that the
passband of F(z) will be constant, even if the cost function
does not explicitly take this into account [5].

Despite the improved spectral selectivity, the transceiver
resulting from the optimization in (4) has a few drawbacks.
It obviously requires more computational power than DMT
due to the utilization of modulated filters instead of a simple
IFFT/FFT pair. The DFT filter banks will also cause a delay
which may be problematic for applications with very low
latency requirements.

III. EQUALIZATION VIA ZERO-PADDING AND THE QR
FACTORIZATION

We now consider a non-ideal channel, that is, we no longer
assume that C(z) = 1. The transfer function of the transceiver
in (1) thus becomes

T(z) = S(z)C(z)G(z), (5)
where C(z) is the N x N channel matrix, which can be
obtained by applying the polyphase identity successively [5],
i.e.

[C(Z)]k,m = [Z mC(Z)] jN
Note that [']N denotes the Z-transform of the N-fold deci-
mation of the corresponding time-domain signal. Due to the
presence of C (z) in (5), the PR property of the DFT filter
bank developed in Section II no longer holds. However, there
exists a way to mitigate the channel matrix in (5) so that the
design method (4) can still yield PR systems. Let us modify
Figure 2 by adding an equalizer block between the channel
and the receiver. The transfer function (5) can then be written
as

T'(z) = S(z)E(z)C(z)G(z). (6)

One cannot simply use E(z) = C-1(z) to equalize the
channel as possibly unstable infinite impulse response (IIR)

(8)
=S (z)E(z)CoGo (z).

The matrix C0 in (8) can be mitigated using the QR
factorization. In this case, we obtain [8]

Co = Q [ 0

where Q is orthogonal (i.e. QTQ = IN) and Ro is an (N-
Q) x (N -Q) upper triangular matrix. Now, if we let E(z)
E [ROlO]QT, we have

T'(z) = S (z) [IN Q] Go (z). (9)

By partitioning S(z) as S(z) = [So(z) Si(z)], where So(z)
and S1 (z) are respectively M x (N -Q) and M x Q matrices,
(9) becomes

T'(z) = So (z)Go (z). (10)

From (9) and (10), we can observe that the last Q samples of
each frame of N samples are dropped at the receiver.

Notice the similarity between (1) and (10). The only dif-
ference involves the sizes of the respective matrices, G(z)
being N x M in (1) and Go(z) being (N -Q) x M in (10).
Therefore, if the equalization scheme as discussed above is
employed, the PR design method presented in Section II can
be applied just as it is, except that N needs to be replaced by
N-Q.
A complete implementation of the proposed transceiver is

illustrated in Figure 3. Note that the factorization of U(z) in
(3) can be exploited to derive an efficient implementation [9].
Moreover, the QR decomposition needs only to be evaluated
once if the channel is time-invariant (as would be the case
for most twisted-pair channels). Since Ro is upper triangular,
one does not need to compute R0-1 explicitly; instead, the
output of the corresponding block in Figure 3 can be obtained
efficiently by backward substitution [8].

It is important to underline that redundancy in the system
shown in Figure 3 comes from two factors:
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Fig. 3. Implementation of the proposed DFT filter bank transceiver.

1) The filter bank transformation (where M samples are
encoded into N -Q samples). 0 --------------------- ------ ---:

2) Zero-padding (where Q zeros are concatenated to a
frame ofN-Q samples, yielding a frame of N samples
in total). 20

The first kind of redundancy is used to provide an improved
spectral selectivity as explained in Section II, whereas the t 40
second kind handles ISI mitigation. In DMT, only the second -50
kind of redundancy exists. Therefore, a tradeoff can be made 60
between spectral selectivity and bandwidth utilization. We 0
should use PR DFT filter banks in environments that benefit
from better spectral selectivity so that bandwidth is not lost
unnecessarily. -90, 01 c

IV. EXPERIMENTAL RESULTS

The PR DFT filter bank transceiver considered in this
section is characterized by the following parameters: M = 64,
N = 80, Q = 8, and D = 1600. The sampling rate is set
to Fs = 2.208 MHz. The prototype filter was designed by
solving (4) and the resulting frequency response is illustrated
in Figure 4. Even though the filter is not "ideal", the system
is still characterized by the PR property due to the underlying
paraunitary structure. A delay of 0.83 ms will be incurred by
such prototype filter. Also shown in the figure is the frequency
response of the DMT rectangular window. Notice that, with
DMT, the first sidelobe is attenuated by about 13 dB, whereas
the attenuation of the PR DFT filter bank is more than 38 dB.

Next, we simulated both systems in two different noisy
environments. Performance was measured in terms of achiev-
able bit rates, as obtained by the rate adaptive bit loading
algorithm proposed in [10]. The algorithm first determines
which subcarriers should be disabled. Whenever the allocated
power would be negative with respect to the optimal water-
filling power distribution, the proper subcarrier is turned off.
The available power budget is then allocated equally among
the remaining subcarriers. The number of bits which can be
loaded in each enabled subcarrier is given by [1], [10]

JSNRog2(±+ Sracode) if m = 0 or M/2

log(± SNR, icode ) otherwise,92 1 P"y margin

Fig. 4. Frequency responses of the PR DFT filter prototype filter (M = 64,
N -Q = 72 and D = 1600) and DMT.

where SNRm is the signal-to-noise ratio of the m-th subcarrier,
)'Tode is the coding gain, '.margin is the additional noise margin,
and F is the SNR gap, representing the difference between the
actual modulation scheme (QAM) and channel capacity for a
given error probability. The achievable bit rate is obtained by
multiplying the modulation rate by the total number of bits
loaded in each subcarrier [1], i.e.

M/2Fs 1
770R = N E /m:
m=O

where Fs is the sampling rate (in Hz). The result is ex-
pressed in bits per second (bps). In our experiments, we select
'Ycode/7.margin = 1 and F = 9.8 dB (corresponding to an error
probability of 10-7).

Figures 5 and 6 show the achievable bit rates of the proposed
PR DFT filter bank and DMT systems with respect to the
transmitted signal power. Results are obtained by averaging
the bit rates over 100 random channels of degree Q = 8.
Such channels are generated by using exponentially damped
independent Gaussian random variables (with zero mean and
unit variance). To mitigate ISI, a block of 8 samples was used
either as a suffix of zeros in the case of PR DFT filter banks
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Fig. 5. Bit rates obtained with an additive white Gaussian noise of
-50 dBm/Hz.
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Fig. 6. Bit rates obtained with a narrow band noise whose PSD is given in
Figure 7.

or as a cyclic prefix in the case of DMT [7]. In Figure 5, a

Gaussian white noise with a flat power spectral density (PSD)
of -50 dBm/Hz was added to the received signal. In Figure 6,
we added a Gaussian narrow band noise, whose PSD is shown
in Figure 7.

Under an additive white noise at low SNR, as shown in
Figure 5, a marginal gain in terms of bit rate can be noted
by using a PR DFT filter bank transceiver instead of a DMT
one; while at higher SNR, DMT appears to be preferable.
However, Figure 6 clearly illustrates that the PR DFT filter
bank system offers a better immunity against narrow band
noise. An improvement of about 0.6 Mbps can be noted for a

transmitted power of 20 dBm. This represents a relative gain
of almost 75%. In this case, trading bandwidth to improve
spectral selectivity provides huge benefits. This flexibility is
not possible with DMT transceivers.

Fig. 7. Power spectral density of the additive narrow band noise.

V. CONCLUSION

In this paper, we have considered ISI-free (or PR) DFT
filter bank transceivers. The prototype filter is designed using
paraunitary matrices to ensure that the PR property is satis-
fied. A minimization of the stopband energy is then applied
which increases spectral selectivity considerably. The resulting
transceiver can be equalized via a zero-padding algorithm
combined with QR factorization. Compared to DMT, exper-
iments show that the PR DFT filter bank system achieves
a much higher bit rate under a narrow band noise. As the
additional bandwidth required to improve spectral selectivity
can be controlled, the proposed PR DFT filter bank system
offers tradeoff possibilities which are not feasible with DMT.
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