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ABSTRACT

In this paper, we present an improved implementation for an auditory-
inspired FFT-based model which calculates a noise-robust FFT spec-
trum. Through the use of characteristic frequency (CF) values of the
cochlear filters in an early auditory (EA) model for power spectrum
selection, and the use of a pair of running averages for the implemen-
tation of self-normalization, the proposed FFT model allows more
flexibility in the extraction of audio features. To evaluate the per-
formance of the proposed FFT model, a speech/music/noise classifi-
cation task is carried out wherein a decision tree learning algorithm
(C4.5) is used as the classifier. Audio features used for classifica-
tion include the mel-frequency cepstral coefficient (MFCC) features,
a set of conventional spectral features, and spectral features calcu-
lated using the proposed FFT model. Compared to the conventional
MFCC and spectral features, the spectral features based on the pro-
posed FFT model show more robust performance in noisy test cases.

1. INTRODUCTION

The past decade has seen extensive research on audio classifica-
tion and segmentation algorithms. Many audio classification algo-
rithms have been proposed along with excellent performance being
reported. However, the issue of background noise, specifically, the
effect of background noise on the performance of classification, has
not been investigated widely. Test results in [1–4] indicate that a
classification algorithm trained using clean sequences may fail to
work properly when the actual testing sequences contain background
noise with certain SNR levels. Recently, an early auditory (EA)
model [5] that calculates a so-called auditory spectrum, has been
employed in audio classification where excellent noise-robust per-
formance is reported [2]. The EA model introduced in [5] can be
simplified as the three-stage process shown in Fig. 1, which de-
scribes the transformation of an audio signal into an internal neural
representation referred to as auditory spectrum.

According to [5], conceptually, the auditory spectrum is an av-
eraged ratio of quantities Ed and Ec, where Ed and Ec are the sig-
nal energies passing through the differential filters ∂sh(t, s) and the
cochlear filters h(t, s) respectively. Considering that the cochlear
filters are broad while the differential filters are narrow and centered
around the same frequencies, Ec can be viewed as a smoothed ver-
sion of Ed. Therefore, the auditory spectrum is a self-normalized
spectral profile [5]. Further analysis reveals that a spectral peak re-
ceives a relatively small normalization factor (i.e., Ec is relatively
small) whereas a spectral valley receives a relatively large normal-
ization factor. The difference in the normalization is known as spec-
tral enhancement or noise suppression.

Unfortunately, this EA model is characterized by high computa-
tional requirements and the use of nonlinear processing. In [4], in-
spired by the self-normalization property of this EA model, we have
proposed a simplified FFT-based model whose noise-robustness has
been verified through a three-class audio classification task. The pro-
posed FFT model employs a simple grouping scheme to reduce the
dimension of the power spectrum vector. However, this scheme fails
to give a clear interpretation of the meaning of the frequency index.
In applications where frequency-dependent audio features need to be
extracted (e.g., spectral centroid, bandwidth), it would be more ap-
propriate, instead of the simple grouping scheme we have proposed,
to group or select power spectrum components based on the original
constant-Q bandpass filters h(t, s).

In this paper, we present an improved implementation for the
FFT model proposed in [4]. With the proposed implementation, the
FFT model allows more flexibility in the extraction of audio features.
The introduced improvements include the use of characteristic fre-
quency (CF) values of the cochlear filters in an EA model for power
spectrum selection, and the use of a pair of running averages for the
implementation of self-normalization. A speech/music/noise classi-
fication task is carried out to evaluate the performance of the new
FFT model wherein a decision tree learning algorithm (C4.5 [6]) is
used as the classifier. Mel-frequency cepstral coefficient (MFCC)
features, so-called conventional spectral features (which include en-
ergy, spectral flux, spectral rolloff point, spectral centroid and band-
width) and the spectral features based on the proposed FFT model
are calculated for audio classification. Compared to the conventional
MFCC and spectral features, the spectral features based on the pro-
posed FFT model show more robust performance in noisy test cases.

The paper is organized as follows. The proposed implementa-
tion of the FFT model is detailed in Section 2. Section 3 explains
the extraction of audio features. Section 4 discusses the setup of the
classification tests. Test results are presented in Section 5.

2. A NEW IMPLEMENTATION FOR THE
AUDITORY-INSPIRED FFT-BASED MODEL

In this work, by making use of the CF values of the bandpass filter set
of the EA model [5], and by introducing a pair of running averages,
we propose an improved implementation for the FFT-based model
presented in [4], as illustrated in Fig. 2. The details of this model are
presented below.

2.1. Normalization of the Input Signal

To make the algorithm adaptable to input signals with different en-
ergy levels, each input audio clip (with a length of one second) is
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Fig. 1. Schematic description of the EA model.
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Fig. 2. Schematic description of the FFT-based model.

normalized with respect to the square-root value of its average en-
ergy.

2.2. Calculation of a Narrow-Band Power Spectrum

Using the normalized audio signal, a narrow-band power spectrum
is calculated through an M -point FFT algorithm. To determine an
appropriate value for M , we have to trade performance against com-
plexity.

Based on [7], the cochlear filters are modeled as a set of constant-
Q bandpass filters. In [8], such a set of 129 bandpass filters is im-
plemented where the corresponding CF values Fk are determined
by

Fk = 2(k−32)/24F0 (Hz), k = 1, 2, · · · , 129 (1)

where F0 = 440 Hz. According to (1), the CF values cover a range
from 180 Hz to 7246 Hz. The difference between two neighboring
CF values is as low as about 5.27 Hz (for k = 1 and 2). For a sig-
nal sampled at 16 kHz which is assumed in this study, even with a
2048-point FFT, such a small frequency interval cannot be resolved.
Meanwhile, since the CF values are logarithmically located, the fre-
quency resolution achieved from a 2048-point or even higher-order
FFT algorithm is more than necessary for the high frequency bands.
In this work, we use an M = 1024 point FFT to achieve a trade-off
between frequency resolution and computational complexity. The
length of the analysis window is 30 ms and the overlap is 20 ms.

2.3. Power Spectrum Selection

To reduce the dimension of the obtained power spectrum vector, a
simple selection scheme is proposed as follows. First, we extend
the values of k in (1), i.e., from -8 to 132. Or equivalently, (1) is
modified as

Fk = 2(k−41)/24F0 (Hz), k = 1, 2, · · · , 141. (2)

Table 1. Frequency index values of Nk and φi

k Nk i φi

1 8 1 8
2 9 2 9
3 9 - -
4 9 - -
5 9 - -
6 10 3 10
7 10 - -
8 10 - -
9 11 4 11
10 11 - -
...

...
...

...
140 491 119 491
141 505 120 505

For each Fk, the corresponding frequency index value Nk is deter-
mined by

Nk = int

(
FkM

Fs

)
, k = 1, 2, · · · , 141 (3)

where the function int(x) returns the greatest integer less than or
equal to x, and Fs is the sampling frequency. After discarding
the repeated Nk values and renumbering the remaining values, we
obtain a set of 120 characteristic frequency index values φi, i =
1, 2, · · · , 120, as illustrated in Table 1.

Using frequency index values φi, the power spectrum selection
is as follows

Y (i) = X(φi), i = 1, 2, · · · , 120. (4)
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Based on this selection scheme, a set of M/2, i.e., 512, power spec-
trum components is transformed into a 120-dimensional vector, with
its frequency index corresponding to a specific CF value of the orig-
inal cochlear filters.

2.4. Spectral Self-Normalization

In [4], a local self-normalization is implemented through the use of
a pair of wide and narrow windows in the frequency domain. Below,
we propose a new implementation which is simpler and easier to use
than the one in [4].

According to [5], the cochlear filters are broad and highly asym-
metric, and the differential filters are narrowly tuned and centered
around the same frequencies. Based on the magnitude responses of
a pair of cochlear filter and differential filter given in [5], an iterative
running average is defined over the frequency index i as follows

Yr(i) = (1− α)Yr(i− 1) + αY (i) (5)

where 0 ≤ α ≤ 1, and Y (i) and Yr(i) are the input and averaged
output respectively. A relatively large α corresponds to a “fast” run-
ning average, while a relatively small α results in a “slow” running
average. A slow and fast running average are employed here to sim-
ulate a cochlear filter and a differential filter respectively.

Let Yf (i) and Ys(i) represent the outputs from a fast and a slow
running averages, respectively. Ys(i) may be viewed as a smoothed
version of Yf (i). Based on Yf (i) and Ys(i), a self-normalization
coefficient at frequency index i, C(i), is defined as

C(i) =
Yf (i)

Ys(i)
, i = 1, 2, · · · , 120. (6)

Finally, the proposed auditory-inspired FFT-based spectrum at
frequency index i is obtained by multiplying the selected power
spectrum at frequency index i, i.e., Y (i), with the corresponding
self-normalization coefficient C(i), and applying a square-root op-
eration.

Compared to the self-normalization scheme in [4], the new im-
plementation proposed here is simpler and easier to use since it only
involves two parameters to adjust, i.e., a fast and a slow running av-
erage coefficients. Besides, by making use of the CF values of the
original bandpass filters, a relationship is created between the fre-
quency index of the proposed FFT spectrum vector and the physical
frequency value. Therefore, the proposed FFT spectrum allows more
flexibility in the extraction of different audio features.

3. AUDIO FEATURES

In this work, three sets of frame-level audio features are calculated
which include mel-frequency cepstral coefficient (MFCC) features,
the conventional spectral features which include energy, spectral flux,
spectral rolloff point, spectral centroid and bandwidth, and spectral
features based on the proposed FFT model. The corresponding clip-
level features, which are calculated over a one-second time window,
are the statistical mean and variance values of these frame-level fea-
tures. The clip-level features are used for the training and testing of
the algorithm. The details of the frame-level features are presented
below.

3.1. MFCC Features

Being widely used in speech/speaker recognition, MFCCs [9] are
also useful in audio classification. For the purpose of performance

comparison, the conventional MFCCs are used in this work. A Mat-
lab toolbox developed by Slaney [10] is used to calculate a set of 13
conventional MFCCs.

3.2. Spectral Features

A set of spectral features are calculated using the conventional FFT
spectrum and the proposed FFT spectrum. These features include
energy, spectral flux, spectral rolloff point, spectral centroid, and
bandwidth.

Energy: The energy is a simple yet reliable feature for audio
classification. In this work, we calculate for each frame the total
energy and the energies of 3 subbands covering frequency ranges of
0-1 kHz, 1-2 kHz and 2-4 kHz respectively.

Spectral flux: The spectral flux is a measure of spectral change
which comes in different forms. The 1st-order spectral flux is de-
fined as the 2-norm of the frame-to-frame magnitude spectrum dif-
ference vector [11, 12]:

SF1n =

√√√√ K∑
k=1

(An+1[k]−An[k])2. (7)

where An[k] is the kth component of the magnitude spectrum vec-
tor (either the conventional spectrum vector or the proposed FFT
spectrum vector) for the nth frame signal, and K is the size of the
magnitude spectrum vector An. The 2nd-order spectral flux, SF2n,
is calculated similarly as follows

SF2n =

√√√√ K∑
k=1

(ΔAn+1[k]−ΔAn[k])2 (8)

where ΔAn[k] = An+1[k]−An[k].
Spectral rolloff point: Scheirer and Slaney defined the spectral

rolloff point as the 95th percentile of the power spectrum distribution
[11]. It is a measure of the skewness of the spectral shape. In this
work, two spectral rolloff points are calculated which correspond
to the 50th and 90th percentiles of the power spectrum distribution
respectively.

Spectral centroid: As a measure of the centroid of the magni-
tude spectrum, the spectral centroid, or brightness, can be defined
as [13, 14]

SCn =

(
K∑

k=1

kAn[k]

)/
K∑

k=1

An[k] (9)

where SCn denotes the spectral centroid.
Bandwidth: Here, the bandwidth is obtained as the magnitude-

weighted average of the differences between the frequency indices
and the centroid [13,14]. The bandwidth can be expressed as follows

BWn =

√√√√( K∑
k=1

(k − SCn)2 An[k]

)/
K∑

k=1

An[k] (10)

where BWn denotes the bandwidth and SCn is the spectral centroid
as defined in (9).

In this work, all these spectrum-based features are grouped to-
gether to form a 10-dimensional spectral feature vector for audio
classification task. To calculate the conventional spectral features,
a 512-point FFT algorithm is used wherein the length of the anal-
ysis window is 30 ms and the overlap is 20 ms. For the spectral
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features based on the proposed FFT model, in the calculation of
spectral rolloff point, spectral centroid and bandwidth, instead of
the frequency indices i in Table 1, the corresponding physical fre-
quency values are used. As for the FFT model we proposed in [4],
due to the use of a simple grouping scheme, it is not appropriate to
extract frequency-dependent spectral features (e.g., spectral rolloff
point, spectral centroid and bandwidth) based on that model.

4. SETUP OF CLASSIFICATION TESTS

4.1. Audio Sample Database

To carry out audio classification test, a generic audio database was
built which includes speech, music and noise clips, sampled at the
rate of 16 kHz. The audio classification decision is made on a one-
second basis. Noise samples are selected from the NOISEX database
which contains recordings of various noises. The total length of all
the audio samples is 200 minutes. These samples are divided equally
into two parts for training and testing respectively.

In the following, a clean test refers to a test wherein both the
training set and testing set contain clean speech, clean music and
noise. A test with a specific SNR value refers to a test wherein the
training set contains clean speech, clean music and noise while the
testing set contains noisy speech and noisy music (both with that
specific SNR value), and noise.

4.2. Classification

A decision tree learning algorithm, i.e., C4.5 [6], is used for the clas-
sification. C4.5 is an algorithm for generating classification rules in
the form of a decision tree based on a set of training examples. Due
to the accuracy and speed, C4.5 is often taken as a reference for the
development of other algorithms.

5. CLASSIFICATION TEST RESULTS

The test results (i.e., the error classification rates) are given in Ta-
ble 2, where MFCC, SPEC-CON and SPEC-FFT represent the con-
ventional MFCC features, the conventional spectral features and the
spectral features based on the proposed FFT model respectively. Two
equally-divided audio data sets (as mentioned in Section 4.1) are
used for training and testing alternately, generating two classifica-
tion error rates for each test case. By averaging over these two er-
ror rates, the average error rate corresponding to a specific test case
is determined and the results are given in Table 2. Although the
conventional MFCC and spectral features provide excellent perfor-
mance in the clean case, their performance degrades rapidly as the
SNR decreases, leading to a poor overall performance. On the other
hand, the new spectral features based on the proposed FFT model
are more robust in noisy test cases.

Table 2. Average error classification rates (%)

SNR(dB) ∞ 20 15 10 5

MFCC 2.8 17.6 29.7 39.6 46.5

SPEC-CON 3.5 13.3 20.8 31.3 46.0

SPEC-FFT 2.9 4.0 6.8 13.0 29.4

6. CONCLUSIONS

In this paper, we have proposed an improved implementation for an
auditory-inspired FFT-based model which calculates a noise-robust
FFT spectrum. With the proposed improvements, the FFT model
allows more flexibility in the extraction of audio features. A C4.5-
based speech/music/noise classification task was conducted to eval-
uate the noise-robustness of the proposed FFT model. Compared to
the conventional MFCC and spectral features, the new spectral fea-
tures calculated using the proposed FFT model show more robust
performance in noisy test cases.
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