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Abstract—One of the key challenges in cognitive radio
(CR) networks is to perform spectrum sensing in environ-
ments characterized by shadowing and fading effects as
well as non-Gaussian noise distributions. Existing literature
on spectrum sensing focuses mainly on the Gaussian noise
model assumption, which does not properly characterize
all the various noise types found in practical CR systems.
This paper addresses the problem of spectrum sensing
in the presence of non-Gaussian noise and interference
for cognitive radio systems. A novel detector based on
the Rao test is proposed for the detection of a primary
user in the non-Gaussian noise environments described
by the generalized Gaussian distribution (GGD). The test
statistic of the proposed Rao detector is derived and
its detection performance is analyzed and compared to
that of the traditional energy detection. The Rao-based
detection is then extended to a multi-user cooperative
framework based on an improved decision fusion rule.
It is shown through computer simulations that for a
given probability of false alarm, the Rao detector can
significantly enhance the spectrum sensing performance
over conventional energy detection in non-Gaussian noise.
Furthermore, the proposed cooperative detection scheme
has a significantly higher global probability of detection
than the non-cooperative scheme.

I. INTRODUCTION

Cognitive radio (CR) has emerged as a key technol-
ogy that can improve the spectrum utilization efficiency
in next generation wireless networks through dynamic
management and opportunistic use of radio resources.
In this approach, a frequency band allocated to one or
more high-priority, or so-called primary users (PU), can
be accessed by other, secondary users (SU) provided that
the PUs are temporally not using their spectrum or they
can be adequately protected from the interference created
by the SUs. Hence, the radio spectrum can be reused in
an opportunistic manner or shared at all time, leading
to increased capacity scaling in the network. Therefore
it is very important to detect the absence (H0 = null
hypothesis ) or presence (H1 = alternative hypothesis) of
a primary user (PU) in complicated noise environments
for CR systems.

Several spectrum sensing methods have been proposed
for single-user and cooperative detection under the white
Gaussian noise (WGN) assumption, see e.g. [1], [2]. In
practice, however, the problem is more challenging as we
need to detect the various PU signals impaired by non-
Gaussian noise and interference, as pointed out in [3].
Non-Gaussian noise impairments may include man-made
impulsive noise, co-channel interference from other SUs,
emission from microwave ovens, out of band spectral
leakage, etc. [4], [5]. Furthermore, the performance of a
spectrum detector optimized against Gaussian distribu-
tion noise may degrade drastically when non-Gaussian
noise or interference signal are present because of the
heavy tails characteristic of their probability density
function (PDF) [6], [7]. In view of these problems, it is
desirable to seek useful solutions to spectrum detection
in practical non-Gaussian noises and to evaluate the
detection performance.

Several standard models are currently available in the
literature to fit non-Gaussian noise or interference dis-
tributions, such as the generalized Gaussian distribution
(GGD) and the Gaussian mixture distribution (GMD).
The GGD is a parametric family of distributions which
can model both ”heavier” and ”lighter” than normal
tails [8] through the selection of its shape parameter.
In particular, it has been widely used to model man-
made noise, impulsive phenomena [4], and certain types
of ultra-wide band (UWB) interference [9].

Spectrum sensing for CR networks in the presence
of non-Gaussian noise has been addressed by several
researchers recently [10], [11]. However, the implemen-
tation of these detectors remains challenging as they
require a priori knowledge of various side information
by the CRs, such as the complex channel gain between
the PU and the SU or the variance of the receiver noise
at the SU, which may not be readily available in practice.
To overcome this limitation, use of the generalized
likelihood ratio test (GLRT) which combines unknown
parameter estimation to the traditional likelihood ratio
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test, has been proposed in [12]. The GLRT is indeed an
optimal detector, but it needs to perform the maximum
likelihood estimation (MLE) of the received signal power
under H1 and noise variance under H0 and, as such,
it suffers from a large computational burden. The Rao
test is an approximate form of the GLRT which only
needs to estimate system model parameters under H0.
Therefore, it has a simpler structure and can lower
computational complexity than the GLRT [13], but its
application to spectrum sensing has been limited to
Gaussian noise [14]. Multi-user cooperation is a com-
monly used technique in spectrum sensing due to its
overcoming the harmful effects of fading and shadowing
by taking advantage of the spatial diversity. Although
many recent works have explored the use of cooperation
for improving the performance of spectrum sensing in
the presence of Gaussian noise [15],[16], multi-user
cooperation for spectrum sensing in the presence of non-
Gaussian noise has not yet received much attention.

In this paper, we consider cooperative spectrum sens-
ing for a CR sub-network comprised of one fusion center
(FC) and multiple SUs, which together seek to detect the
presence/absence of a PU over a given frequency band.
Each SU employs a Rao detector to independently sense
the PU signal in the presence of non-Gaussian noise
characterized by a GGD. The local decisions of the SUs
are then forwarded to the FC which finally provides a
global decision based on this information. We analyze
and derive the detection and false alarm probabilities
of the proposed cooperative sensing scheme. Through
numerical simulations, we show that the Rao detector
can significantly enhance the local detection performance
over conventional energy detection in non-Gaussian
noise. Furthermore, for a given probability of false alarm,
the proposed Rao-based cooperative spectrum sensing
scheme has a significantly higher global probability of
detection than the non-cooperative one.

The rest of the paper is organized as follows. The CR
system and GGD noise models under consideration are
presented in Section II. The local Rao-based detector
used by the SUs is derived and analyzed in Section III,
while the cooperative spectrum sensing scheme imple-
mented at the FC is discussed in Section IV. Simulation
results of the proposed schemes with comparison to
traditional energy detection are provided in Section V.
Conclusions are drawn in Section VI.

II. PROBLEM FORMULATION

In this section, we state the spectrum sensing problem
in two steps, i.e., presentation of the CR system model
followed by description of the non-Gaussian noise mod-
el.

A. System Model

We consider a CR sub-network comprised of M
SUs and one FC. Each SU senses the presence of
the PU signal over a limited time interval, through a
wireless channel that is assumed to be frequency non-
selective and time invariant. The local decisions from
the SUs are forwarded to an FC where a final, or
global decision is made. Within this general cooperative
framework, spectrum sensing can be formulated as a
binary hypothesis testing problem, with the null and
alternative hypotheses respectively defined as H0: PU
absent and H1: PU present. Under these two hypotheses,
the baseband signal samples zm(n) ∈ C, C denotes the
set of complex numbers, received by the m-th SU, where
m ∈ {1, 2, . . . ,M}, at discrete-time n ∈ {1, 2, . . . , N},
can be formulated as{ H0 : zm(n) = wm(n)

H1 : zm(n) = um(n) + wm(n)
(1)

where wm(n) ∈ C is an additive background noise com-
ponent present under both hypotheses and um(n) ∈ C is
the PU signal component present only under H1. Con-
sidering the time-invariant, flat fading channel model,
we can express the latter as um(n) = hms(n) where
s(n) ∈ C is the signal sample emitted by the PU at time
n and hm ∈ C is the channel gain between the PU’s
transmitter and the m-th SU’s receiver.

Under both hypotheses, we model the noise sequence
wm(n) as an independent and identically distributed
(IID) random process, with zero-mean, variance σ2

m and
circularly symmetric distribution, whose special form is
further discussed below; the noise sequences observed
by different SUs are mutually independent. The PU
signal s(n) is modeled as an IID process with zero-
mean but otherwise arbitrary distribution; it is assumed
to be independent of the noise processes {wm(n)}.
The channel coefficients hm are assumed to be IID
over the spatial index m, with zero-mean but arbitrary
distribution; they are independent of the PU signal and
SU noises.

In general, the SUs have no a priori knowledge about
the emitted PU signal s(n) nor the channel gains hm,
although they can extract relevant information about the
noise wm(n) through measurement under H0 and local
processing.

B. Non-Gaussian Noise Model

In this paper, we assume that the probability density
function (PDF) of the additive background noise wm(n)
is known up to a variance parameter σ2

wm
, which will be

estimated by the SUs as part of the proposed approach.
Specifically, we consider the GGD model in the context
of CR, which allows to control the degree of non-
Gaussianity in the noise distribution efficiently through



a shape factor. The PDF of the complex circularly
symmetric GGD with zero-mean, variance σ2

wm
> 0 and

shape factor β > 0, is obtained from [17] as

p(wm(n);β, σ2
wm

) =
β2

[2B(β, σ2
wm

/2)Γ(1/β)]2

exp
(− |w�

m(n)|β + |w�
m(n)|β

Bβ(β,
σ2
wm

2 )

)
(2)

where wm(n) ∈ C, w�
m(n) = Re{wm(n)} and

w�
m(n) = Im{wm(n)} denote the real and imaginary

parts of wm(n),

B(β, σ2
wm

) = σwm

( Γ(1/β)

2Γ(3/β)

)1/2

(3)

is a scaling factor and Γ(α) =
∫∞
0

xα−1e−xdx. It
is easily seen that the GGD reduces to the Gaussian
distribution for β = 2 and to the Laplacian distribution
for β = 1. By varying β, different tail behaviours can be
obtained: for β > 2, the tail decays faster than for the
normal, while for 0 < β < 2, it decays more slowly. The
GGD with 0 < β < 2 is therefore well suited to fit the
”heavier” than normal tail behavior found in practical
CR systems.

Then, spectrum sensing for CR applications in non-
Gaussian noise must take into account these large mag-
nitude noise samples with heavier-than-normal tail dis-
tribution, in order to improve the detection performance,
e.g., increasing the probability of detection under a given
probability of false alarm. To this end, a good detector
for non-Gaussian noise typically utilizes nonlinearities
or clippers to reduce the noise spikes, as will be seen in
below for the proposed Rao detector.

III. RAO DETECTOR FOR LOCAL SPECTRUM
SENSING

In this section, we propose a nonlinear detector based
on the Rao test which will allow the SUs to make a
preliminary, local decision on the channel occupancy by
the PU. The derivation is carried on for a selected SU,
say the one with index m.

Referring to the system model equation (1), we
begin by introducing some necessary definitions and
notations for convenience in analysis. We define
u�
m(n) = Re{um(n)}, u�

m(n) = Im{um(n)}, z�m(n) =
Re{zm(n)} and z�m(n) = Im{zm(n)}. The complete
vector of signal samples observed by the SU is denoted
as zm =

[
zm(1), . . . , zm(N)

]T
. Adopting the notations

from [18], we define the parameter vector

θr =
[
u�
m(1), . . . , u�

m(N), u�
m(1), . . . , u�

m(N)
]T

(4)

which contains the real and imaginary parts of the PU
signal samples. We also let θs = σ2

wm
denote the

nuisance parameter for the detection problem at hand.

Finally, we define θ = [θT
r θs]

T , which is a (2N + 1)-
dimensional real vector.

The Rao test is asymptotically equivalent to the GLRT,
yet it does not require the MLE of the unknown pa-
rameters under H1 and is computationally simpler [18].
In order to formulate the Rao test, we first recast the
detection model (1) in the following equivalent form:{ H0 : θr = 0, θs > 0

H1 : θr �= 0, θs > 0
(5)

Within this framework, the Rao test statistic T (zm) at
the m-th SU for composite binary parameter test can be
expressed as

T (zm) = ∇ ln p(zm; θ̂0)
T
[
I−1(θ̂0)

]
rr
∇ ln p(zm; θ̂0)

(6)
where p(zm;θ) is the PDF of the received complex-
valued observation vector zm under H1, ∇ denotes the
gradient operator with respect to the entries of vector θr,
defined as

∇ =
[ ∂

∂u�
m(1)

, . . . ,
∂

∂u�
m(N)

,
∂

∂u�
m(1)

, . . . ,
∂

∂u�
m(N)

]T
,

(7)
θ̂0 = [θ̂T

r0 θ̂s0]
T is the MLE of θ under H0, I(θ) is the

(2N + 1) × (2N + 1) Fisher information matrix (FIM)
[19] associated to the PDF p(zm;θ), and [I−1(θ̂0)]rr
is the 2N × 2N matrix obtained as the upper-left block
partition of the inverse FIM I−1(θ) under H0, i.e. when
evaluated at θ = θ̂0.

According to the system model defined in Section
II, the PDF of the received signal vector zm, with IID
samples, can be expressed as

p(zm;θ) =
N∏

n=1

β2

[2B(β,
σ2
wm

2 )Γ(1/β)]2

exp{−|z�m(n)− u�
m(n)|β + |z�m(n)− u�

I (n)|β
Bβ(β,

σ2
wm

2 )
}.

(8)

Taking the natural logarithm of (8), we obtain

ln p(zm;θ) = 2N ln
β

[2B(β,
σ2
wm

2 )Γ(1/β)]
−

∑N
n=1(|z�m(n)− u�

m(n)|β + |z�m(n)− u�
m(n)|β)

Bβ(β,
σ2
wm

2 )

(9)

From (5), it follows that the MLE of θr under H0 is
simply θ̂r0 = 0. The MLE of θs = σ2

wm
under H0 is

found by computing the derivative of (9) with respect to
σ2
wm

, assuming θr = 0, and setting the result to zero.
This yields

θ̂s0 = σ̂2
wm

=
(β( 2Γ(3/β)Γ(1/β) )

β/2

2N

N∑
n=1

(|z�m(n)|β+|z�m(n)|β)) 2
β

(10)



The gradient of (9) with respect to θr, as defined in
(7), can be expressed as

∇ ln p(zm;θ) = [ν�(zm;θ),ν�(zm;θ)]T (11)

where ν�(zm;θ) = [ν�1 , . . . , ν
�
N ] and ν�(zm;θ) =

[ν�1 , . . . , ν
�
N ]. In turn, the entries of these vectors are

defined as

ν�n =
β|z�m(n)− u�

m(n)|β−1sgn(u�
m(n)− z�m(n))

Bβ(β,
σ2
wm

2 )
(12)

ν�n =
β|z�m(n)− u�

m(n)|β−1sgn(u�
m(n)− z�m(n))

Bβ(β,
σ2
wm

2 )
(13)

where sgn(x) is 1 if x > 0 and −1 if x ≤ 0.
We now proceed to calculate the submatrix

[I−1(θ)]rr, which appears in (6). Here, it is convenient
to partition the FIM I(θ) as [19]

I(θ) =

[
Irr(θ) Irs(θ)
Isr(θ) Iss(θ)

]
, (14)

where the upper left block Irr(θ) has dimension 2N ×
2N . Using the definition of the FIM, we find

Irr(θ̂0) = −E
[∇[∇ ln p(zm; θ̂0)]

T
]

=
2β(β − 1)Γ(1− 1/β)Γ(3/β)

σ̂2
wm

Γ2(1/β)
I2N

(15)

When the MLE of σ2
wm

is sufficiently accurate, we can
show that

Irs(θ̂0) ≈ 02N,1 (16)

where 02N,1 is a 2N × 1 zero vector. Next, applying
a well-known inversion formula for block partitioned
matrices [20], the 2N × 2N upper left block of the
inverse FIM can be expressed as

[I−1(θ)]rr =
[
Irr(θ)− Irs(θ)I

−1
ss (θ)Isr(θ)

]−1
. (17)

Consequently, using (15) and (16) in (17), we have

[I−1(θ̂0)]rr = I−1
rr (θ̂0) (18)

Finally, by substituting (10), (11) and (18) into (6),
we obtain the Rao detection statistic, i.e.:

T (zm) = φ(β)
N∑

n=1

[|z�m(n)|2(β−1) + |z�m(n)|2(β−1)
]

(19)
where φ(β) is a scaling factor defined as

φ(β) =
βΓ( 3β )

β−1

(β − 1)(
σ̂2
wm

2 )β−1Γ( 1β )
β−2Γ(1− 1

β )
(20)

From (19), we can see the statistic of Rao detector is
the function of β and sample values. So for the GGD
noise with a given β, our proposed detector does not
require any a priori knowledge of PU signal, channel

gain and the variance of noise. Accordingly, the Rao
detector gives a binary decision ym for the m-th SU as

ym =

{
1, T (zm) ≥ γm
0, T (zm) < γm

(21)

where γm is a threshold, usually pre-determined accord-
ing to the desired probability of false alarm requirement
for the m-th SU.

IV. COOPERATIVE SPECTRUM SENSING

Each cognitive user needs to conduct the MLE of σ2
wm

and the Rao detection locally, yielding local one-bit hard
decision result ym and the corresponding SNRm. Let the
decisions and SNRs of all the M SUs be denoted as y =
[y1, y2, ..., yM ] and SNR = [SNR1, SNR2, ..., SNRM ],
which will be input to the FC. The FC chooses the SUs
whose SNRs are above the average SNR value of all the
SUs to make a global decision. Suppose a total of M ′

SUs are selected. Then, the global decision to be made
by the FC is given as

TFC(y) =

M ′∑
m=1

ym
H1
≷
H0

γFC (22)

The threshold γFC in (22) may be set to two extreme
values:1 (OR rule) and M ′ (AND rule). With M ′ SUs
participating in the cooperation based on the OR rule,
the cooperative probability of detection and that of false
alarm are, respectively, given by

Pd,OR = 1−
M ′∏
m=1

(1−Pd,m), Pfa,OR = 1−
M ′∏
m=1

(1−Pfa,m),

(23)
wherePd,m and Pfa,m denote the probability of detection
and the probability of false alarm of the m-th SU with
Rao detector. Similarly, when the AND rule is employed,
we obtain the cooperative probability of detection and
that of false alarm as given below,

Pfa,AND =
M ′∏
m=1

Pfa,m, Pd,AND =
M ′∏
m=1

Pd,m. (24)

V. SIMULATION RESULTS

In this section, simulation results are provided to
illustrate the performances of the proposed detector and
the cooperative scheme in different situations.

A. Generation of the GGD noise

Let FX be the cumulative distribution function (CDF)
of a random variable X and F−1

X be its inverse. If F−1
X

has a closed-form expression, such as in the case of
Laplacian distribution, we can obtain a large number
of realizations of X as given by xi = F−1

X (gi), where
gi(i = 1, 2, ..., n) are random numbers uniformly dis-
tributed over [0, 1]. However, generating the samples of a



general GGD is complicated since the inverse CDF may
not exist. Here, we use the three-step method [21] for
the generation of the samples of GGD with 0 < β < 2.

B. Energy Detection

Assume that the primary user signal s(n) is a zero-
mean white Gaussian random variable, and the noise
is a zero-mean WGN or GGD noise. The receiver
operation characteristics (ROC) are computed based on
5000 Monte Carlo runs and the sample size is set to N =
1000. Fig. 1 shows the energy detection performances for
Gaussian noise and GGD noise at SNR = −10dB. When
β decreases, the degree of non-Gaussianity of the GGD
noise increases. Clearly, the performance under GGD
noise is worse than that under WGN, and the detection
performance gets worse with increasing the degree of
non-Gaussianity of the GGD noise.
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Fig. 1. ROC of energy detector for WGN and GGD noise

C. Rao Detection

Assume that the primary user is a PSK signal, s(n) =
cosφ(n) + j sinφ(n), φ(n) ∈ [0, 2π), and the noise is
GGD with β = 1.1. Simulations are carried out with
N = 1000 and M = 1. The performance of the proposed
detector under SNR = −15dB is shown in Fig.2 with
comparison to that of the energy detection with the same
degree of non-Gaussianity. It is seen that when Pfa = 0.1,
the probability of detection of our detector is 70%, but
that of the energy detector is 28% only, which fails to
meet the requirement of spectrum sensing. Again, Fig.3
shows that our proposed detector has a much better
detection performance than the energy detector under
almost all levels of SNR. In other words, with the same
signal and probability of detection, the proposed detector
has gained almost a 5dB SNR when Pfa = 0.1 and
β = 1.1.

D. Cooperative Detection

Assuming the number of SUs is M = 4, we consider
the SUs have the same degrees of non-Gaussianity with
β = 1.1. The corresponding SNRs are assumed as
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Fig. 3. Probability of detection versus SNR (β = 1.1)

−30dB, −15dB, −13dB, and −12dB. According to the
proposed cooperative scheme in Section IV, the 1st
SU will not be selected, so M ′ = 3. Simulations are
carried out with N = 1000 and 5000 Monte Carlo
runs. Fig.4 shows the ROC curves of the cooperative
detection as compared with single SU local detection
and the traditional AND and OR rules. The probability
of detection of the proposed OR rule is the same as
that resulting from the traditional OR rule in this case,
but the probability of detection of the proposed AND
rule is higher than that of the traditional AND rule. In
particular, for Pfa = 0.1, Pd with our proposed AND
rule is increased from 10% (the min Pd of the four SUs)
to 95%, but with the traditional AND rule, Pd is only
increased to 53%.

Assume that the number of observations is N = 1000,
the number of SUs is M = 4. We consider four different
degrees of non-Gaussianity, corresponding to β1 = 2,
β2 = 1.8 ,β3 = 1.5 and β4 = 1.1, for the SUs,
respectively. The SNRs are assumed as SNR1 = −30dB,
SNR2 = SNR3 = SNR4 = −15dB. It can be seen
from Fig. 1 and Fig.4 that as the degree of the non-
Gaussianity increases, the performance of the energy
detector decreases while the performance of the proposed
Rao detector is greatly improved. Fig.4 shows that the
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proposed OR rule results in the best performance, by
improving the probability of detection from 10% with
β = 2 to 70% as the global performance when Pfa = 0.1.
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VI. CONCLUSION

We have studied the Rao detector based spectrum
sensing for cognitive radio in non-Gaussian noise envi-
ronment that is modeled by GGD. We have focused on
a scenario where the PU signal, the fading channel gain
and the noise variance are unknown to the CR users. A
new cooperative detection scheme for spectrum sensing
in the non-Gaussian noise has been derived via the Rao
detector and the decision fusion. Simulation results have
shown that the proposed Rao detector yields large per-
formance gains over the traditional energy detector, and
the proposed cooperative scheme exhibits a much better
detection performance than the traditional cooperative
scheme.
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