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Abstract—In this paper, we propose two complexity reduction
techniques for blind adaptive beamforming in orthogonal fre-
quency division multiplexing (OFDM) antenna array systems.
For each sub-carrier, a beamformer with generalized sidelobe
canceller (GSC) structure is designed according to the con-
strained constant modulus (CCM) criterion with weight vectors
adaptation based on the recursive least squares (RLS) method.
The two techniques that we propose for complexity reduction rely
on frequency domain interpolation and spatial domain clustering,
respectively. The former exploits the coherence bandwidth of
the radio channel, so that only the weight vectors at selected
frequencies need to be adapted, while the remaining weight
vectors are obtained via interpolation. The latter relies on the
partitioning of the receiving array into sub-arrays of smaller size.
In addition, a combination of these two techniques is proposed to
further reduce the complexity. A complexity analysis is presented
to quantify the computational savings offered by the proposed
techniques. Finally, simulation results are provided to illustrate
that these savings can be obtained at the price of only a minor,
acceptable loss in performance when compared to the direct
application of the conventional CCM-RLS-GSC beamforming
algorithm to the wideband OFDM antenna array systems. 1

Index Terms—Blind adaptive beamforming, OFDM, frequency
interpolation technique, spatial clustering technique.

I. INTRODUCTION

To suppress interference and cope with changes in radio
environments, an effective approach which consists of using
an antenna array along with adaptive beamforming algorithms
has been reported in [1]–[3]. The digital receiver is designed
to steer a directional beampattern towards the direction of a
desired user by computing a properly weighted sum of the
individual antenna outputs. Adaptive beamforming techniques
can be implemented to drive the iterative weight optimization
process and so form optimum beampatterns [4]. For the sake
of saving channel bandwidth, there has been much interest in
blind beamforming which attempts to restore certain properties
of the transmitted signal without the aid of pilots. The CCM-
RLS family of algorithm, which aims to restore the constant
modulus (CM) property of the source modulation while sub-
ject to a constraint on the response to the desired user, is
of considerable interest due to its fast convergence and good
interference cancelation performance [5], [6].

1This work was supported by the National Science Foundation of China
(NSFC) under Grant 61101103, the Scientific Research Project of Zhejiang
Provincial Education Department under Grant Y201122655, the Huawei In-
novation Research Program, the Fundamental Research Funds for the Central
Universities, and the 5th Generation Mobile Communication Program in China
(863 Project) under Grant number 2014AA01A707.

Orthogonal frequency division multiplexing (OFDM) has
become the most popular technique for high date rate trans-
mission over broadband wireless channels. It has been adopted
in several wireless standards such as the 4th generation (4G)
of mobile phone mobile communication technology standards
and the IEEE 802.11a wireless local area network (WLAN)
standard. Undoubtedly OFDM remains a strong air inter-
face candidate for future-generation wireless communication
systems [7]. As a multi-carrier modulation method, OFDM
converts single high speed data stream into multiple low speed
data streams, and modulates them onto different sub-carriers.
This allows flat fading channel techniques to be applied to the
broadband communication for data processing.

The CCM-RLS-GSC presented in [8] has been proven to
offer good performance in the blind adaptive beamforming
task over a single narrow-band sub-carrier. However, the direct
or complete application of this algorithm for each individual
sub-carrier within an OFDM antenna array receiver induces
considerable computational complexity. To overcome this lim-
itation, some approaches have been investigated in [9] where
the authors proposed two frequency schemes, namely flat-top
and linear interpolation, to reduce complexity by exploiting
coherence bandwidth. For the transmission of radio signals
through highly correlated channels, the number of OFDM
sub-carriers is much larger than the channel order. Several
contiguous sub-carriers may end up experiencing similar fades.
This suggests that the correlation properties between the
beamforming weight vectors of adjacent sub-carriers is similar
to the sub-channel correlation with one receive antenna.

In this work, we first present an extension of these schemes
to a more general form of frequency domain interpolation.
Furthermore to make it more practical, the BPSK used in [9]
is extended to a more general M-QAM type of modulation
where the signal constellation exhibits a CM property. Besides
frequency domain interpolation, we propose another clustering
technique in the spatial domain which relies on the partitioning
of the receiving antenna array into sub-arrays of smaller
size. By reducing the dimension of input signal vectors, the
computation of correlation matrices can be simplified which
will result in a reduction of the system complexity. In addition,
a combination of these two techniques, i.e., frequency domain
interpolation and spatial domain clustering, is proposed to fur-
ther reduce the complexity. Simulation results are provided to
show that the resulting computational savings can be obtained
at the price of only a minor, acceptable loss in performance.
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The rest of the paper is organized as follows. Section
II introduces the OFDM system model with beamforming.
Section III gives an overview of the CCM-RLS-GSC algo-
rithm and extends it to OFDM system. The two proposed
techniques for computational complexity reduction and their
combined application are presented in Section IV along with
a discussion of computational savings. Simulation results are
presented in Section V to demonstrate the system performance
after applying the proposed complexity reduction techniques.
Finally some conclusions are drawn in Section VI.

II. SYSTEM MODEL

In this work, we consider a wireless communication scenari-
o in which K independent user signals impinge on a uniform
linear array (ULA) comprised of M identical omnidirectional
antennas as shown in Fig. 1.
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Fig. 1: Baseband OFDM system model

On the TX side, OFDM modulation is employed for each
transmitter. The input data from user k ∈ {1, . . . ,K} is first
encoded and then mapped to a time sequence of complex
valued symbols sk(j), where j is a discrete-time index.The
transmitted symbols are characterized by structural properties
that can be exploited for their restoration, which in this work
amounts to the use of a constant modulus constellation, that is:
|sk(j)| = 1 for all j. The transmitted symbols from user k are
assumed to be independent and identically distributed (i.i.d)
random variables. Sequences of symbols transmitted by differ-
ent users are also independent. The input symbols from user
k are split into N sub-carriers by means of a serial-to-parallel
(S/P) converter, thereby forming a sequence of frequency do-
main data blocks sk(i) = [s

(1)
k (i), . . . , s

(n)
k (i) . . . , s

(N)
k (i)]T ,

where i denotes the symbol epoch at the low sampling rate
and the sub-carrier index n ∈ {1, . . . , N}. An inverse discrete
Fourier transform (IDFT) operation is then applied to convert
the frequency domain data blocks into a vector of N time
domain samples and a cyclic prefix is added which aims to
eliminate the intersymbol interference.

In going through the wireless channel, the transmitted
signals are corrupted by linear channel effects and additive
noise. For the nth sub-carrier signal, the channel from the kth
user to the mth RX antenna is assumed to contain L discrete
paths, which can be modeled as

h
(n)
mk =

L−1∑
l=0

α
(n)
l vm(θl), (1)

where α
(n)
l and vm(θl) respectively denote the complex valued

channel gain and steering phasor of the lth path on the nth sub-
carrier channel. In this work, α(n)

l is normally distributed with
zero mean unit variance and is taken to be the same for each
antenna. Let λc denote the wavelength, ds = λc/2 be the inter-
element spacing of the ULA and θl be the direction of arrival
(DOA) of the lth path, then we can express the normalized
steering phasor as vm(θl) =

1√
M
e−j2π ds

λc
cos θl(m−1).

On the RX side, each antenna signal is fed to an OFDM
demodulator where the cyclic prefix is removed and a discrete
Fourier transform (DFT) operation is implemented to recover
the frequency domain data. Assuming the receiver is under
perfect synchronization, the set of received signals on the nth
sub-carrier at symbol epoch i yields an M -dimensional vector

r(n)(i) = H(n)s(n)(i) + n(i), i = 1, 2, . . . (2)

where H(n) = [h
(n)
1 ,h

(n)
2 , . . . ,h

(n)
K ] is an M×K narrowband

channel, h
(n)
k = [h

(n)
1k , . . . , h

(n)
Mk]

T is the M × 1 vector of
channel responses from user k to the antenna array receiver
and n(i) is the additive noise vector with zero-mean and
covariance matrix σ2I, where σ2 denotes the variance and I is
an identity matrix of order M . s(n)(i) = [s1(i), . . . , sK(i)]T

denotes the corresponding user signals transmitted on the nth
sub-carrier. Without loss of generality, we let the transmitted
signal from user k = 1 as the desired signal and assume the
corresponding channel vector h(n)

1 is known by the receiver.
By virtue of the multiple antennas on the RX side, narrow-

band spatial filtering can be applied to the OFDM demodulator
outputs to combat the effects of directional interference in each
OFDM sub-channel. Adaptive narrow-band linear processors,
i.e. beamformers, are applied to the receive signal vectors
of different sub-carriers in order to recover an estimate of
the transmitted signal s1(i). We denote by w(n) the vector
of complex beamforming weights applied to the received
signal r(n) on the nth sub-carrier. Our beamforming interest
lies in the efficient computation of a set of optimal weight
vectors, say w

(n)
opt for n ∈ {1, . . . , N} to recover the original

transmitted symbols from desired user 1 in the presence of
co-channel interference and noise on each sub-carrier.

III. OVERVIEW OF BLIND ADAPTIVE CCM-RLS-GSC
ALGORITHM IN OFDM SYSTEM

A. Blind Adaptive CCM-RLS-GSC Algorithm

For the sake of bandwidth efficiency, we consider the use
of a blind adaptive beamforming algorithm that can seek
an optimal solution by restoring properties inherent in the
transmitted signals. In particular, for each sub-carrier, the
CCM-RLS beamformer with the GSC structure can achieve
a good learning and tracking performance. The objective of
the design is to minimize the expected deviation of the square
modulus of the beamformer output from a constant quantity,
referred to as the CM cost function and expressed as JCM =

E
[∣∣∣∣w(n)Hr(n)

∣∣p − 1
∣∣2], while maintaining the contribution

from the desired user constant, i.e., w(n)Hh
(n)
1 = c. Usually,

we set p = 2 and c = 1 for convenience.



By employing a signal blocking matrix B which is or-
thogonal to the channel matrix h

(n)
1 , i.e., BHh

(n)
1 = 0, the

practical GSC structure converts this constrained optimization
problem into an unconstrained one. We adopt the RLS method
to implement our adaptive beamformer, accordingly, a time-
averaged CM cost function can be defined as

JCM (i) =
i∑

j=1

λi−j

(∣∣(h(n)
1 −Bw(n)(i))

H
r(n)(j)

∣∣2 − 1

)2

,

(3)
where λ is a forgetting factor which should be chosen as
a positive constant close to, but less than 1, w(n)(i) =

[w
(n)
1 (i), w

(n)
2 (i), ..., w

(n)
M−1(i)]

T is the (M − 1)× 1 adaptive
weight vector which is adjusted on-line to minimize the time-
averaged CM cost function. Following the same analysis and
derivations steps as in [8], we formulate the CCM-RLS-GSC
algorithm for single sub-carrier summarized in Table I.

TABLE I: The CCM-RLS-GSC algorithm for subcarrier n

Initialization:
w(n)(0) = [1, 0, ..., 0]T ,

Q(n)−1(0) = δ−1I, δ=small positive constant.
Update for each symbol epoch i
Coefficient updating:

w̃(n)(i− 1) = h
(n)
1 −Bw(n)(i− 1),

y(n)(i) = w̃(n)(i− 1)Hr(n)(i), r̃(n)(i) = y(n)(i)∗r(n)(i),

x(n)(i) = BH r̃(n)(i), d(n)(i) = h
(n)
1 r̃(n)(i)− 1,

Adaptation gain computation:

k(n)(i) =
Q(n)(i−1)−1x(n)(i)

λ+x(n)(i)HQ(n)(i−1)−1x(n)(i)
,

Q(n)(i)−1 = λ−1Q(n)(i− 1)−1 − λ−1k(n)(i)x(n)(i)HQ(n)(i− 1)−1,

Weight vector calculation:

e(n)(i) = d(n)(i)−w(n)(i− 1)x(n)(i),

w(n)(i) = w(n)(i− 1) + k(n)(i)e(n)(i)∗.

B. Existing Frequency Clustering Technique in OFDM System

Since the CM property is assumed to hold across all sub-
carriers, it is possible to execute the CCM-RLS-GSC algo-
rithm of Table I independently for each sub-carrier. However,
practical OFDM systems typically use a large number of
sub-carriers and therefore, such a direct application of the
algorithm, to which we shall refer as the complete solution,
induces considerable computational complexity. It is therefore
of interest to develop complexity reduction techniques.

In the frequency domain, adjacent OFDM sub-channels are
correlated, as the number of sub-carriers is much greater than
the length of channel response. Since the optimal weight vec-
tors minimizing (3) depend on the characteristics of the radio
channels, it follows that the correlation between these weight
vectors is similar to the sub-channel correlation. Motivated
by this observation, the authors in [9] proposed flat-top and
linear interpolation in order to take advantage of the correlation
between neighboring sub-channels and thereby reduce the
complexity of the CCM-RLS algorithm in OFDM system.

The flat-top interpolation combines adjacent sub-carriers
into a cluster where for each sub-carrier, the beamformer
output is computed by using the weight vector corresponding
to a selected representative sub-carrier. In this way, only a
single carrier per cluster needs to be adapted, which can signif-
icantly reduce the computational complexity. In this frequency
clustering technique, the sub-carrier located in the middle of
the cluster is selected for adaptation, which can minimize the
spectral distance between the selected and interpolated sub-
carriers. Suppose the N sub-carriers are divided into clusters
of size P , the receiver evaluates the adaptive weight vectors for
the selected sub-carriers {w(lP+�P/2�) : 0 ≤ l ≤ N/P − 1},
and then reconstructs the weight vectors for all the other sub-
carriers by copying the nearest w(lP+�P/2�).

This frequency clustering is an efficient strategy but it
suffers from mismatch at the edges of the cluster boundaries
because the sub-carriers near the boundary are more likely
to experience different fades, especially when the the radio
propagation channel changes rapidly. In this case, [9] proposed
the use of linear interpolation. In this work, we resort to a
general higher-order interpolation technique instead.

IV. COMPLEXITY REDUCTION TECHNIQUES

For highly frequency selective radio propagation channel,
the sub-carriers within a cluster will not experience similar
fades and the basic techniques proposed in [9], i.e., zero-order
and first-order interpolation, may not be adequate to achieve
a good system performance In this section, we propose two
improved techniques to reduce the system complexity.

A. Proposed Polynomial Interpolation Technique

For the same reason as above but to better exploit the
correlation between weight vectors in the frequency domain,
we consider the use of polynomial interpolation to improve
the accuracy and smoothness of the weight vector across the
frequency band of interest. Hence, we propose a general in-
terpolation technique in which the intermediate weight vectors
are obtained by connecting the selected weight vectors in each
cluster by a polynomial curve in the complex plane. We illus-
trate this concept with the piecewise polynomial interpolation,
which is inspired by OFDM channel interpolation, as presented
in [10] for the purpose of channel estimation. It should
be noted that under this framework, the linear interpolation
technique becomes a special case as will be explained below.

Suppose the cluster size is P and let {w(lP+1) : 0 ≤ l ≤
N/P − 1} denote the selected sub-carriers, we first update
these weight vectors by executing steps of the CCM-RLS-
GSC algorithm as shown in Table I. However, instead of
copying the nearest weight vector for the other sub-carriers
in a cluster as in above frequency clustering technique, we
adopt the polynomial interpolation technique [11] to obtain the
weight vectors of intermediate sub-carriers. The wight vector
on the (lP + P + k)th sub-carrier can be computed from a
R-basepoint S-order interpolator, which can be expressed as



w(lP+P+k) = WCTU =
S−1∑
s=0

(k − 1

P

)s R∑
r=1

crsw
((l+R−r)P+1)

(4)
where k = 2, 3, ..., P , U =

[
(k−1

P )
0
, (k−1

P )
1
, ..., (k−1

P )
S−1]T

,
W =

[
w((l+R−1)P+1), ...,w((l+1)P+1),w(lP+1)

]
, C denotes

the S × R polynomial interpolator matrix which should be
chosen carefully. Fortunately, the authors in [11] suggested
a pre-designed four-basepoint third-order piecewise parabolic
interpolator which can provide adequate performance in most
digital signal processing applications. It is defined as

C =

[ 0 0 1 0
−α α+ 1 α− 1 − α
α − α − α α

]
(5)

where 0 ≤ α ≤ 1, α denotes the design parameter, through
which a trade-off can be made between the steepness of roll-
off of the main lobe and the level of its first lobe. Typically
α = 0.5 is a conservative yet effective choice in most
applications, where in this case many coefficients become
identical and the multiplications can be replaced by additions
which will contribute to reduce the computational complexity
in practice. Specially with α = 0, this polynomial interpolator
reduces to a linear interpolator

w(lP+P+k) =
k − 1

P
w((l+2)P+1) + (1− k − 1

P
)w((l+1)P+1)

(6)
Like the linear interpolation technique proposed in [9], there

exists a phase ambiguity problem when we perform the inter-
polation operation. Generally, the CCM-RLS-GSC algorithm
updates its weight vectors based only on the modulus of the
incoming symbols, regardless of the phase rotation in the
transmitted data, i.e., it is phase-blind. This may lead to the
problem that the interpolated results would not work for the
intermediate sub-carriers. To solve this phase ambiguity prob-
lem, the weight vectors obtained by the selected sub-carriers
should be rotated to minimize the phase difference between
them. The rotated phase shift is obtained by minimizing the
following formula ||w(lP+1) − ejφrw((l+r)P+1)||2, in which
φr(r = 1, 2, 3) is the phase difference between the weight
vectors of w(lP+1) and the other selected sub-carriers. We
can obtain

φr = (w((l+r)P+1)Hw((l+r)P+1))−1w((l+r)P+1)Hw(lP+1).
(7)

Then instead of using the original w((l+r)P+1), we will
employ ejφrw((l+r)P+1) to compute the weight vectors of
unselected sub-carriers. The corresponding equation can be
expressed as

w(lP+P+k) = W̄CTU, (8)

where W̄ =
[
ejφ3w((l+3)P+1), ..., ejφ1w((l+1)P+1),w(lP+1)

]
.

B. Proposed Spatial Clustering Technique

Besides the use of frequency domain interpolation, system
computational complexity can also be reduced by considering

processing across the spatial domain. It can be seen from Table
I that when the antenna array contains M elements, the CCM-
RLS-GSC algorithm requires on the order of M2 operations
per symbol epoch. If we can manage to decrease M , the
computational complexity can be reduced. Thus we propose a
spatial clustering technique which relies on the partitioning of
the receiving array into sub-arrays of smaller size.

To develop the spatial clustering technique, we assume
that the original M -element antenna array can be partitioned
into Q sub-arrays, each quipped with M/Q antennas. We
can see from Table I that vector r̃(n)(i), which contains the
message of the received signal, is the only input vector for the
whole algorithm at a given iteration, other variables such as
x(n)(i), d(n)(i),k(n)(i) and Q(n)(i)−1 are internal parameters
which can be updated independently for each sub-array. Note
that r̃(n)(i) = y(n)(i)∗r(n)(i) where r(n)(i) can be partitioned
as

r(n)(i) = [r
(n)
1 (i)T , . . . , r(n)q (i)T , . . . , r

(n)
Q (i)T ]T (9)

and r
(n)
q (i) is the received signal vector on the qth sub-array

where q ∈ {1, . . . , Q}. We should note that message r
(n)
q (i)

associates to the current qth sub-array while r̃(n)(i) contains
information y(n)(i) from all the sub-arrays. In a corresponding
manner, the complete weight vector can be partitioned as

w(n)(i) = [w
(n)
1 (i)T , . . . ,w

(n)
Q (i)T ]T , (10)

and the beamformer output is

y(n)(i) =

Q∑
q=1

y(n)q (i) =

Q∑
q=1

w̃(n)
q (i)Hr(n)q (i). (11)

The term y(n)(i) denotes the estimated symbol which contains
common information from all the sub-arrays. Now this com-
mon information is included in each sub-array through r̃

(n)
q (i)

which can be expressed as

r̃(n)q (i) = r(n)q (i)r(n)(i)Hw̃(n)(i) = r(n)q (i)y(n)(i)∗. (12)

Based on the above discussion, a spatial clustering technique
with Q sub-arrays can be developed as follows. Once the
received signal from qth sub-array r

(n)
q (i) becomes available,

the coefficient y
(n)
q (i) is computed separately for this sub-

array. Then the local outputs from all the sub-arrays, i.e., y(n)q

for q ∈ {1, . . . , Q}, are collected and summed to get the final
beamformer output y(n)(i). This common information y(n)(i)
is then sent back to each sub-array, where it is used to perform
the weight vectors adaptation based on a local realization of
the CCM-RLS-GSC algorithm.

Since each sub-array has smaller antenna size, it is possible
for the spatial clustering technique to achieve a faster conver-
gence rate compared to the complete solution. Upon further
investigation, we note the key difference between this spatial
clustering technique and the complete solution lies in the quan-
tity d(n)(i), which takes the form d

(n)
q (i) = h

(n)
1q r̃

(n)
q (i) − 1

in the former where h
(n)
1q is extracted from h

(n)
1 , while takes

the form d(n)(i) = h
(n)
1 r̃(n)(i) − 1 in the latter. This special

simplification may result in a loss in system performance.



C. Proposed Combined Technique

As discussed before, we can exploit both the frequency
and spatial domain methods to reduce the computational
complexity. It is reasonable to combine these two techniques
together, which may provide additional flexibility in terms of
complexity and system performance.

The combined technique can be developed as follows. Like
the spatial clustering technique, we first divide the receiving
antenna array into sub-arrays of smaller size. For the weight
vectors at the selected sub-carriers in each sub-array, we
update their values according to the proposed spatial clustering
technique. Then, the remaining weight vectors at the interme-
diate sub-carriers are obtained via the proposed polynomial
interpolation technique. In this case, the system complexity
can be further reduced due to both the spatial and frequency
domain processing.

D. Computational Complexity

In this section, we discuss the computational complexity of
the proposed complexity reduction techniques for the appli-
cation of the CCM-RLS-GSC algorithm. The computational
requirements are described in terms of the number of arith-
metic operations, namely multiplications. The basic CCM-
RLS-GSC algorithm as presented in [8] needs 5M2 + M
complex multiplications per symbol epoch where M is the
number of antenna elements at the RX side. Let N denote
the number of sub-carriers, P denote the cluster size and Q
denote the number of sub-arrays. In Table II below, we list
the computational complexity results for different techniques.

TABLE II: Computational Complexity

Technique Multiplications
complete solution 5M2N +MN
freq clustering (5M2N +MN)/P
freq interpolation (5M2N +MN)/P + 4M(N − P ) + 3MN/P
spatial clustering (5M2/Q+M)N
combined (5M2/Q+M)N/P + 4M(N − P ) + 3MN/P

V. SIMULATION RESULTS

In this section, we validate the proposed complexity re-
duction techniques for the CCM-RLS-GSC algorithm through
numerical simulations. These techniques will be applied to the
OFDM blind beamforming system, operating over multi-path
Rayleigh fading channels.

We consider a coded OFDM system with N = 64 sub-
carriers and the length of CP is 6. The code used here is
a basic convolutional code of rate 1/2 with the generate
matrix G = [171, 133]. On the TX side, for each transmitter
including the desired user and interferers, 4-QAM modulation
is employed to keep the CM property, and the source power
is normalized. On the RX side, an ULA containing M = 16
antenna elements with half-wavelength inter-element spacing
is implemented. The TX symbols propagate through a multi-
path channel and are received in the presence of interference
and additive white Gaussian noise. The propagation of the

desired user’s signal is assumed to contain 3 multi-paths. In
each simulation, The DOAs are randomly generated with a
uniform distribution between 0 and 180 degrees, the exact
DOA of the source of interest is assumed to be known by the
beamformer. The noise is zero mean spatially and temporally
white Gaussian, the forgetting factor λ is set to 0.99 and the
design parameter α is set to 0.5.

The performance of the CCM-RLS-GSC algorithm with dif-
ferent techniques are evaluated in terms of their computational
complexity and achievable signal plus interference-to-noise
ratio (SINR) and bit error rate (BER). The SINR for the nth
sub-carrier is given by

SINR(n)(i) =
w̃(n)H(i)Rs(i)w̃

(n)(i)

w̃(n)H(i)Ri+n(i)w̃(n)(i)
, (13)

where Rs(i) is the auto-correlation matrix of the desired signal
and Ri+n(i) is the cross-correlation matrix of the interference
and noise in the environment. We also define an overall

broadband SINR, i.e., SINR = 1
N

N∑
n=1

SINR(n).

We first compare the computation complexity of different
techniques in terms of multiplications as listed in Table III. To
make the complexity of the proposed two techniques close,
we choose the following parameter P = 4, Q = 4. The data
in the Table III show that the complexity ratio for proposed
frequency interpolation (30.5%), spatial clustering (25.9%)
and combined technique (12.1%) are much smaller when
compared to the complete solution.

TABLE III: Computational Complexity Ratio

Technique Multiplications Complexity ratio
complete solution 82944 1
freq clustering 20736(P = 4) 0.25
freq interpolation 25344(P = 4) 0.305
spatial clustering 21504(Q = 4) 000.259
combined 00 9984(P = Q = 4) 00.121

In what follows, we assess the beamformer SINR perfor-
mance against symbol epoch for these techniques. The number
of users is K = 3 and the input SNR is fixed at 10dB and these
curves in Fig. 2 are plotted by averaging the overall broadband
SINR over 1000 independent simulations. For each simulation,
the various CCM-RLS-GSC based algorithms, which differ in
the type of complexity reduction techniques, are initialized as
presented in Table I and run until steady-state convergence.
It can be seen that as symbol epoch increases, all output
SINR values increase to a steady-state. The graph illustrates
that among the complexity reduction techniques, the frequency
interpolation can reach the best SINR performance while the
spatial clustering can achieve the fastest convergence rate. The
combined technique with the lowest computational complexity
can result in a higher convergence rate compared with the
direct complete solution but smaller steady-state SINR. For
these proposed complexity reduction techniques, the SINR loss
is no more than 1dB.

In the next experiment, we evaluate the SINR performance
of the proposed techniques in a nonstationary scenario. The
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system starts with K = 3 users including one desired user and
two interferers. After 800 symbol epochs, two more interferers
having the same power as the desired user enter the system.
The input SNR is 10dB. From the results in Fig. 3, we can
see that the abrupt change at 800 symbol epoch reduces the
output SINR suddenly and degrades the performance of all
algorithms. Although initial convergence may be slow, the
adaptive algorithm, including all the complexity reduction
techniques, quickly track this change and recover to a new
steady-state.
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Fig. 4 shows the basic convolutional coded average BER
performance for these algorithms. The OFDM system receiver-
s process 800 OFDM symbols, averaged 1000 independent
runs for all BER simulations. The experiment is carried out
under the same scenario as in Fig. 2, in this case we investigate
the average BER performance versus different SNR values. It
can be seen that the BER performance of spatial clustering
may be better than other complexity reduction techniques over
the considered SNR range, especially at high SNR value. For
our proposed two techniques and the combined technique, the
loss is only around 0.5dB.

VI. CONCLUSION

This paper attempts to make practical the extension of
CCM-RLS-GSC blind adaptive beamforming algorithm to
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OFDM antenna array systems. We proposed two techniques
to save the computational complexity. One is the frequency
domain interpolation which exploits the coherence bandwidth
of the radio channel, only the weight vectors at the selected
frequencies are adapted while a general polynomial interpo-
lator is implemented to obtain the weight vectors of interme-
diate sub-carriers. The other is the spatial domain clustering
which relies on the partitioning of the receiving array into
sub-arrays of smaller size. Furthermore, we proposed the
combination of these two techniques to provide additional
reduction. A complexity analysis and the numerical simulation
results enabled us to conclude that both complexity reduction
techniques can be utilized as good solutions to reduce the
system computational complexity in practical OFDM antenna
array systems.
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