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ABSTRACT 
 
An approximation for the constant modulus (CM) cost 
function is proposed to allow the use of the fast recursive 
least squares (RLS) algorithm. Simulations are performed 
to compare the performance of the introduced RLS-CM 
and stochastic gradient descent (SGD) algorithms for 
blind adaptive beamforming. Results indicate that the 
introduced RLS-CM has faster convergence speed and 
good tracking ability.  
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1. INTRODUCTION 
 
The problem of detecting and extracting communications 
signals from dense interference environments is important 
to the wireless communications systems. Adaptive 
beamforming techniques provide a potential solution to 
this problem, by forming high gain beams in the direction 
of arrival (DOA) of the signals of interest (SOI) and, 
ideally, direct nulls in the directions of arrivals of the 
interferences.  
Conventional beamforming techniques make use of a 
known training sequence. However, this consumes a large 
amount of spectrum resource, especially when the users 
move fast or the channel variation is severe. To address 
this issue, various blind beamforming techniques [1-10], 
which can separate multiple cochannel signals that 
impinge on the antenna array from unknown source 
location, were proposed. There are two kinds of blind 
beamforming techniques based on the temporal features 
of the SOI.  
One kind uses the cyclostationary properties of 
communication signals [4-7]. A cyclostationary signal has 
the statistical property of correlating with either a 
frequency-shifted or a complex conjugate version of 
itself. These beamforming techniques can suppress not 
only Gaussian but also non-Gaussian interferences by 
utilizing the signal cyclostationary properties. However, 
the cyclic correlation matrix in the cyclostationary 
beamformer leads to intensive computation. These 
algorithms also suffer from severe performance 

degradation even if there is a small mismatch in the cycle 
frequency of the desired signal.  
The other kind of widely used approaches is based on the 
constant modulus (CM) beamforming [1-3, 8-10]. A CM 
beamforming technique exploits the low modulus 
fluctuation exhibited by most communication signals to 
extract them from the array output. This beamformer is 
based on minimizing the MSE between the array output 
after a modulus nonlinearity and a fixed real number. The 
cost function of the CM algorithm is: 
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where E[⋅] denotes statistical expectation and y(n) denotes 
the array output. 
Consequently, the CM beamformer does not require a 
special array geometry or knowledge of the array 
manifold or noise covariance matrix to adapt the array 
weights. In general, the CM cost function has a non-
quadratic order and is solved via a stochastic gradient 
descent (SGD) approach. It is well known that stochastic 
gradient descent method is quite sensitive to the selected 
step size and has a slow convergence speed. To overcome 
this limitation, Agee [3] proposed a least squares CMA 
(LSCMA) for the J(1,2) case, which is a block-update 
iterative algorithm.  
In this paper, we introduce an approximation into the CM 
cost function J(2,2) that enables the use of the rapidly 
converging RLS algorithm for the array weight adaptation. 
The introduced RLS-CM algorithm will be described in 
detail. Its convergence and tracking ability will be 
investigated by simulations for different cases.  
 
 
2. SIGNAL & SYSTEM MODELING 
 
Array signal processing involves the manipulation of 
signals induced onto the elements of an array. A constant 
modulus array, with adjustable element weights, is shown 
in Figure 1. 
The signals from each element xl(n), 1≤l≤L are scaled by 
a complex weight wl(n), 1≤l≤L, and summed to form the 
array output  y(n). From the diagram in Figure 1, an 
expression for the array output can be given by 
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where * denotes the complex conjugate. Using vector 
format to denote the beamformer weights and the signals 
induced on the antenna elements, i.e. 
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the output of the beamformer becomes 
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where the superscripts T and H stand for the transpose and 
complex conjugate transpose, respectively. The objective 
of an adaptive array is to extract the desired signal by 
finding the weight vector w according to a particular 
criterion.  
Under the assumption that the transmitted signal has a 
constant envelope, the array output should have constant 
envelope too. However, the multipath fading and 
interference can cause amplitude fluctuations in the 
received signals. The objective of CMA is therefore to 
restore the array output to a constant envelope signal on 
average. This is accomplished by adjusting the weight 
vector w to minimize the cost function J as defined by (1). 
For simplification, a simple SGD algorithm is generally 
employed to minimize the cost function J(p,q). When p = 
q = 2, using complex matrix calculus and replacing the 
statistical expectation with an instantaneous value, a 
recursive update equation is obtained [1]: 
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where µ is the step size.  
 
 
3. THE RLS-CM ALGORITHM 
 
In the above SGD method (6), the step size µ should be 
carefully selected. A small step size will lead to slow 
convergence speed while a large step size will result in 
the adapted weight oscillation.  
It is well known that RLS algorithm has a fast 
convergence. However, when p=q=2, the cost function (1) 
is non-quadratic in the array weights and cannot be solved 
by the RLS algorithm. In the following, we will introduce 
an approximation to derive a new cost function that 
enables the use of the RLS. 
Replacing the time average operation in (1) with the 
exponentially weighted sum yields: 
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where λ is the forgetting factor and 0 ≤ λ ≤1. Rewriting 
(7) as 
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and replacing x  by , we 
obtain the modified cost function: 

( ) ( )tnH w ( ) ( )1−nnH wx

( ) ( ) ( ) ( )(( 2

1
11' −−= ∑

=

− nnntJ HH
t

n

nt wxxwλ   (9) 

The main advantage of (9) over (8) is that the former is 
now quadratic in the array weights; the weight vector 
w(n-1) in (9) is available from previous iterations and can 
be computed for 1 ≤ n ≤ t at the time instant t. For 
stationary or slowly varying signals, the difference 
between  and  is small, and 
the above approximation is justified. Defining 

, (9) can be re-written as: 
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The above modified cost function J' is an approximate of 
the original cost function J, and can be solved easily for 
w(t) by using RLS fast algorithm [11]. The resulting 
algorithm, called RLS-CM, is described in Table 1. 

 
Table 1. RLS-CM algorithm 

Initialization w(0)=[1,01×L]T, P(0)=δI, δ = small 
positive constant 

Approximation 
and RLS update 
(For each 
iteration 
n=1,2,…) 

z(n)=x(n)xH(n)w(n-1) 
h(n)=zH(n)×P(n-1) 
g(n)=P(n-1)×z(n)/(λ+h(n)×z(n)) 
P(n)=(P(n-1)-g(n)×h(n))/λ 
e(n)=1-wH(n-1)×z(n) 
wH(n)=wH(n-1)+g(n)×e*(n) 

 
 
4. ILLUSTRATIVE SIMULATION 
RESULTS 
 
A 10-element uniform linear array is employed. The 
distance between two adjacent sensors is half of the 
carrier wavelength of the desired signals. Initially all 
components of the weight vector are set to zero except 
one.  
The performance of the beamformer is measured by the 
output Signal-to-Interference-Noise-Ratio(SINR), defined 
as 
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where  is the true power of the i-th source, and R  
is the true autocorrelation matrix of the interference (noise 
and other signals) in the environment. 
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Example 1: To compare the tracking ability of the 
proposed RLS-CM algorithm and the SGD algorithm, we 
abruptly change the number of sources at iteration 5000. 
In all simulations, we assume that the sources have a 
normalized variance of 1 and the noise power is 

. The phase ψ , , of each source 

 is independently and uniformly 
distributed over [-π, π], where M is the number of sources. 
In the first 5000 iterations, there are 2 sources with 
directions of arrival (DOA) θ

1.02 =nσ
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1 = 10° and θ2 = -30°; in the 
subsequent 5000 iterations, there are two additional 



sources impinging onto the array with DOA θ3 = -45° and 
θ4 = -25°.  
In Fig. 2, the forgetting factor of the RLS-CM algorithm 
is chosen as λ = 0.99, and the step size of SGD algorithm 
is set to µ = 0.005 and µ = 0.009. In the initial 
convergence phase, the RLS-CM algorithm has a much 
faster convergence speed than that of the SGD algorithm. 
The SGD algorithm exhibits a two-stage convergence 
behavior. In the first stage, it quickly approaches a certain 
error level. However, in the second stage, it takes a much 
longer time to converge to the minimum MSE. By 
increasing the step size of the SGD, the first stage gets 
shorter but the misadjustment becomes larger. After a 
sudden change, i.e. two sources added at iteration 5000, 
both the RLS-CM and the SGD algorithms can quickly 
track the change. However, the SGD has a lower steady-
state SINR than the proposed RLS-CM algorithm. This 
lower SINR becomes more pronounced as the SGD step 
size increases due to the corresponding increase in 
misadjustment. Figures 3(a) and 3(b) show the beam 
patterns of the proposed RLS-CM and SGD algorithms 
 (µ = 0.005) at iterations 5000 and 10,000, respectively.  
The results indicate that the proposed RLS-CM algorithm 
provides deeper nulls in the directions of the other 
interfering sources. 
Example 2: In this example, initially, there are two 
sources with θ1 = 10° and θ2 = -30°. However, at iteration 
5000, the situation is changed to four different sources 
with θ1 = -5°, θ2 = 20°, θ3 = 45° and θ4 = -25°. The 
forgetting factor in the RLS-CM is still λ = 0.99 and the 
SGD step size is µ = 0.005. The other parameters are the 
same as in Example 1. The results are shown in Figures 4 
and 5. Because the source configuration is totally 
changed, both algorithms will take longer time to 
converge (see Fig. 4). The results again indicate that the 
proposed RLS-CM algorithm has a much faster tracking 
ability (Fig. 4), and provides deeper nulls (Fig. 5), than 
the SGD approach. 
 
 
5. CONCLUSION 
This paper proposed an approximation to the CM cost 
function and the corresponding RLS-CM algorithm for 
blind-adaptive beamforming. Simulations were performed 
to investigate its convergence behavior and tracking 
ability. The results indicate that the proposed RLS-CM 
algorithm has good initial convergence behavior and 
tracking ability under sudden change conditions, better 
than the SGD. 
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Figure 1: Adaptive beamforming structure 
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Figure 2:  SINR versus iteration number for RLS-CM and SGD in Example 1 
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Figure 3 (a): Beam patterns obtained with the RLS-CM and SGD in Example 1 at iteration 5000. 
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Figure 3 (b): Beam patterns obtained with the RLS-CM and SGD in Example 1 at iteration 10,000. 
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Figure 4:  SINR versus iteration number for RLS-CM and SGD in Example 2 
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(a) Beam pattern at iteration 5000 
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(b) Beam pattern at iteration 10,000 

Figure 5: Beam patterns obtained with the RLS-CM and SGD in example2 
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