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Abstract
In this paper, we present a novel deep neural network (DNN)
assisted subband Kalman filtering system for speech enhance-
ment. In the off-line phase, a DNN is trained to explore the
relationships between the features of the noisy subband speech
and the linear prediction coefficients of the clean ones, which
are the key parameters in Kalman filtering. In the on-line phase,
the input noisy speech is firstly decomposed into subbands, and
then Kalman filtering is applied to each subband speech for de-
noising. The final enhanced speech is obtained by synthesizing
the enhanced subband speeches. Experimental results show that
our proposed system outperforms three Kalman filtering based
methods in terms of both speech quality and intelligibility.
Index Terms: speech enhancement, subband Kalman filter,
deep neural network, wavelet transform

1. Introduction
Speech enhancement aims at removing the background noise in
noise-corrupted speech to improve its quality and intelligibil-
ity. It has been widely adopted in many applications including
speech/speaker recognition, hearing aids and speech communi-
cation. During the past decades, researchers have proposed a
variety of speech enhancement techniques.

Kalman filtering based speech enhancement was first pro-
posed in [1] and has attracted researchers’ great interest because
of its capability to enhance the time-domain and non-stationary
speech signals. In this kind of method, the clean speech is often
characterized as an autoregressive (AR) process and the Kalman
filter is viewed as a linear MMSE estimator of the original clean
speech. The performance of Kalman filtering is largely de-
pendent on the estimation accuracy of the AR parameters, i.e.,
the linear prediction coefficients (LPCs) and the driving noise
variance. Experiments demonstrated that the AR parameters
estimated from the clean speech could achieve excellent per-
formance [1], However, the clean speech is not accessible in
practice. As such, various estimation algorithms have been pro-
posed to obtain the estimated parameters from noisy observa-
tion [2–5].

In recent years, the deep neural network (DNN) based sig-
nal processing methodology has largely advanced the research
in speech enhancement. Compared with the unsupervised tech-
niques, the DNN based approaches can achieve a better en-
hancement performance under the complex noise environment
and/or low signal-to-noise ratio (SNR) conditions due to the
powerful learning capability of the DNN. The earliest work em-
ploying DNN to learn the relationship between the magnitude
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spectra of the noisy speech and that of the clean speech was
found in [6], where the enhanced speech is reconstructed with
the DNN-estimated magnitude and the noisy speech’s phase.
Subsequet works have utilized DNN to estimate the key param-
eters in traditional speech enhancment methods in order to im-
prove the performances [7–9]. For example, in [9], the DNN
is employed to estimate a complex ideal ratio mask (cIRM),
which is then applied to the noisy spectrogram to suppress the
additive noise. Recently in [10], we have proposed a DNN as-
sisted Kalman filter for speech enhancement, where the DNN
is trained to estimate the AR parameters for Kalman filtering.
Although the performance is significantly improved compared
with the iterative Kalman filtering [2], the high-frequency com-
ponents of the enhanced speech are still degraded. One possible
reason is that the noise does not affect the speech signal uni-
formly over the whole spectrum [11], while the Kalman filtering
is not performed with respect to the different frequencies.

Subband analysis is widely adopted in speech processing
such as speech coding. It has also been applied to speech en-
hancement to separately reduce the background noise in dif-
ferent subbands [12–15]. In [12], a subband Kalman filtering
method was proposed, which applies low-order Kalman filters
to the noisy subband speeches, and reconstructs the fullband
clean speech by synthesizing the enhanced subband speeches.
In [13], the authors proposed a multiband spectral subtraction,
where the noisy speech spectrum is divided into several non-
overlapping bands, and then spectral subtraction is performed
independently in each band. The authors of [12] and [13] have
shown that the their subband methods yeild better performances
compared to their respective full-band counterparts [2, 16].

In light of the successes of the previous subband tech-
niques, in this paper, we propose a novel DNN assisted sub-
band Kalman filtering system for speech enhancement, where
the noisy speech is divided into subband speeches using discrete
wavelet transform (DWT). For each noisy subband speech, the
DNN is employed for the estimation of AR parameters and the
Kalman filter is then applied to obtain the enhanced subband
speech. The inverse DWT (IDWT) is finally used to obtain the
enhanced full-band speech. Compared with our previous work
in [10], the proposed system performs denoising at each sub-
band, and is thus able to not only suppress the background noise
but also reduce the speech distortion in the enhanced speech,
especially at higher frequencies. Computer simulations under
various conditions show that the new system can yield better
speech quality and intelligibility than previous Kalman filter
based algorithms.

2. Proposed speech enhancement system
The overall block diagram of our DNN assisted subband
Kalman filtering system is depicted in Fig.1. It contains four
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parts: subband analysis, DNN based line spectrum frequencies
(LSFs) estimation, Kalman filtering and subband synthesis. The
details of each part are introduced in the following subsections.

Figure 1: Block diagram of proposed speech enhancement sys-
tem.

2.1. Subband analysis and synthesis

Since the Kalman filter is viewed as a time-domain estima-
tor, we adopt the DWT to directly decompose the time-domain
noisy speech. This way can avoid the short-time Fourier trans-
form (STFT) operation, which brings moderate distortion to the
time-domain signal due to the necessary segmentation and win-
dowing processes [15].

The DWT and IDWT are performed by a set of well-defined
low-pass/high-pass filters together with a down/up-sampling
process, which are regarded as distortionless analysis/synthesis
for a time-domain signal. Taking a 2-level DWT for an exam-
ple, in the first level, DWT decomposes a full-band signal x into
two subband signals with respect to the low and high frequency
information components. In the next level, the decomposition
operation is further applied to the low frequency subband sig-
nal, while the high frequency subband remains untouched. That
is, with a J-level of DWT, we will obtain J+1 subband signals,
as denoted by

xb = DWT J{x}, b = 1, 2, · · · , J + 1, (1)

where xb is the b-th subband signal produced by DWT with b
denoting the subband index.

Similarly, for subband synthesis, the IDWT is adopted to
reconstruct a full-band signal x̂ from the subband signals, which
is given by

x̄ = IDWT J{x}, (2)

where x denotes the set of all subband signals {xb}J+1
b=1 . The

reconstructed signal x̂ is identical to the original signal x in the
perfect reconstruction case.

2.2. Kalman filtering

While the noisy speech y(n) is decomposed into subband
speeches {yb(n)}J+1

b=1 in the subband analysis, Kalman filter is
then applied to each noisy subband speech for denoising. To
illustrate the Kalman filtering algorithm, we take an arbitrary
noisy subband speech yb (n) for example, which is viewed as
a mixture of the clean subband speech sb (n) and the additive
noise wb (n),

yb (n) = sb (n) + wb (n) , (3)

where n is the discrete time index. The clean subband speech
sb (n) is usually modelled as a dynamic process with the AR
system,

sb (n) =

p∑
i=1

ab,isb (n− i) + vb (n) , (4)

where ab,i are LPCs of the clean subband speech, p the order of
the model, and vb (n) the driving noise with variance σ2

v .
To facilitate the Kalman filter presentation for speech en-

hancement, sb(n) and yb(n) are expressed in a state-space form
as, {

sb (n) = Fsb (n− 1) + Gvb (n)
yb (n) = HT sb (n) + wb (n)

, (5)

where sb (n) = [sb (n− p+ 1) , . . . , sb (n)]T denotes the
speech state vector, F is the transition matrix given by

F =


0 1 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 1
ab,p ab,p−1 · · · ab,2 ab,1

 , (6)

and H = G = [0, · · · , 0, 1]T ∈ Rp.
Given the corrupted subband speech yb(n), the Kalman fil-

ter recursively calculates an unbiased and linear MMSE esti-
mate of the state vector sb(n). The denoising process can be
summarized by the following recursive equations:

e (n) = yb (n)−HT ŝb (n|n− 1)

K (n) = P (n|n− 1)H
(
σ2
w + HTP (n|n− 1)H

)−1

ŝb (n|n) = ŝb (n|n− 1) + K (n) e (n)
P (n|n) =

(
I−K (n)HT

)
P (n|n− 1)

ŝb (n+ 1|n) = Fŝb (n|n)
P (n+ 1|n) = FP (n|n)FT + σ2

vGGT

,

(7)
where ŝb (n|n− 1) is a priori estimate of the current state
vector sb (n); P (n|n− 1) the predicted state error correla-
tion matrix of ŝ (n|n− 1), e (n) the innovation, K (n) the
Kalman gain matrix, ŝb (n|n) the filtered estimate of state vec-
tor sb (n), and P (n|n) the filtered state error covariance ma-
trix of ŝb (n|n). The enhanced subband speech ŝb (n) is finally
given by

ŝb (n) = GT ŝb (n|n) . (8)

To perform Kalman filtering, three parameters in Eq. (7)
should be determined beforehand, that is, the additive noise
variance σ2

w, the driving noise variance σ2
v , and the transition

matrix F with the LPCs of the clean subband speech. In our
method, the additive noise variance is estimated and updated
during the unvoiced frames and the driving noise variance is
given by

σ2
v = σ2

y − σ2
w, (9)

where σ2
y can be computed from the noisy observation with

Levinson-Durbin algorithm [17]. The estimation of the LPCs
of sb(n) is introduced in the following subsection.

2.3. DNN based LSFs estimation

To begin with, the LPCs are converted to the LSFs in DNN
based estimation since the well-behaved dynamic range of LSFs
is suitable for a stable DNN training process [7, 10]. The
DNN based LSFs estimation is divided into off-line and on-line
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phases. In the off-line phase, a DNN is trained to learn the map-
ping between the acoustic features of noisy subband speeches
and the LSFs of the clean counterparts. In the on-line phase,
given the features of a noisy subband speech, the well-trained
DNN predicts the LSFs of the clean subband speech. It should
be mentioned that instead of training several DNNs for different
subbands separately, we employ a single DNN for all the sub-
band speeches to better exploit the relationships within different
subbands as well as to reduce the computational and structural
complexity.

For the input of DNN, we extract LSFs along with four
acoustic features [18] of the noisy speech to represent the
speech characteristics. The input features are extracted for each
frame of the noisy speech. To make a full use of the temporal
information of speech, we incorporate the features of the adja-
cent two frames into a single extended feature vector, which is
then normalized for effective training.

The structure of the DNN used in our proposed system is
shown in Fig.2. It is fully-connected and consists of one input
layer, three hidden layers with 1024 units in each layer, and one
output layer. The activation function used in the hidden layer is
the rectified linear unit (ReLU), while a linear function is used
in the output layer.

Figure 2: Proposed DNN for LSFs estimation.

Back propagation is used to find the optimal weights and
biases of the DNN to minimize the cost function, which is de-
fined as the mean square error (MSE) between the reference
LSFs and the estimated ones for all subbands,

Er =
1

J+1

J+1∑
b=1

{
1

Mb

Mb∑
m=1

{
1

p

p∑
i=1

[
L̂b,i (m)−Lb,i (m)

]2}}
(10)

where Mb denotes the total number of frames for the b-th noisy
subband speech, Lb,i(m) and L̂b,i(m) are the reference and the
estimated LSFs for frame m, respectively, where i ∈ {1, ..., p}
is the order index of the clean speech AR model.

In summary, the proposed DNN assisted subband Kalman
filtering system includes an off-line training phase and an on-
line enhancement phase. The former trains a DNN with sub-
band noisy and clean speech pairs, while the latter is described
in detail below.

• Decompose the full-band noisy speech y(n) into the sub-
band versions {yb(n)} with DWT.

• Extract the features of each noisy subband speech and
employ the trained DNN to obtain the estimated LSFs,
which are converted to the LPCs to form the transition
matrix F.

• Estimate the additive noise variance σ2
w during unvoiced

frames and compute the driving noise variance σ2
v using

Eq. (9).

• Perform Kalman filtering with Eq. (7) for each noisy
subband speech yb(n) to obtain the enhanced counter-
part ŝb(n).

• Synthesize the enhanced subband speeches {ŝb(n)} to
reconstruct the final enhanced speech ŝ(n) with IDWT.

3. Experimental results
3.1. Experimental setup

Clean speeches are selected from the IEEE sentence database
[19], among them 670 utterances are used for the off-line train-
ing and 50 different utterances for the on-line enhancement.
Eight types of noise from NOISEX-92 database [20] are picked
to generate the noisy speeches, in which four types (babble,
white, street, factory) are used as seen noise, and another four
types (pink, buccaneer2, destroyerengine, hfchannel) as unseen
noise. The mixing SNR levels are set to -3dB, 0dB, 3dB and
6dB. In the off-line phase, only seen noise is mixed with the
training clean speech, which results in 10720 noisy and clean
speech pairs. In the on-line phase, both seen and unseen noise
are mixed with testing clean speech, giving 800 noisy speeches
for both seen and unseen noise. The sampling frequency is set
to 16 kHz for both clean speech and noise. It should be noted
that since our proposed system aims to enhance the noisy sub-
band speeches in the on-line phase, the noisy and clean speeches
in off-line phase are also decomposed into their respective sub-
band signals for the DNN training. A rectangular window is
used to divide the audio signals into 20 ms frames with no
overlap. For subband Kalman filtering, we set sb(0|0) = 0,
P(0|0) = I, and the AR model order as p = 12.

To evaluate the enhancement performance, two objective
metrics are selected: the perceptual evaluation of speech qual-
ity (PESQ) measure [21] and the short-time objective intelligi-
bility (STOI) measure [22]. PESQ and STOI evaluate the pro-
cessed speech from speech quality and intelligibility perspec-
tives, respectively. For both metrics, a higher score means a
better speech quality or intelligibility.

3.2. Level of subband analysis

First, we decompose the noisy speech at different levels to find
the optimal subband analysis level J in our system. Three lev-
els (J = 1, 2, 3) are tested under seen noise. Table 1 shows
the objective results under the assumption that the clean speech
is accessible to obtain ideal AR parameters for Kalman filter-
ing. In this case, the three subband Kalman filters outperform
the full-band processing, which indicates that denoising in each
subband indeed removes the additive noise better and introduces
less speech distortion. In addition, decomposing the speech
with a deeper level contributes to a better performance when
the ideal parameters are available.

Table 2 shows the objective results where the DNN-
estimated AR parameters are employed for Kalman filter-
ing. We find that adopting 1-level DWT for subband analy-
sis, namely, decomposing the noisy speech into two subband
speeches, leads to the best result. As the subband analysis
level gets deeper, the number of the input subband signals is
increased, which requires a more complex structure to perfectly
learn the relationships between more input features and the tar-
gets. As such, the 1-level led to better enhancement result. An-
other possible reason is that if we decompose at a deeper level,
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more Kalman filters are required. Since the parameters cannot
be ideally estimated for each Kalman filter, the estimation error
leads to a degradation of the enhanced subband speeches. Thus,
the synthesized full-band speech suffers more performance de-
crease for high-level subband analysis cases. As a result, we
choose 1-level decomposition in our system.

Table 1: Objective results using ideal AR parameters for
Kalman filtering under seen noise

-3dB 0dB 3dB 6dB
Noisy 1.41 1.52 1.68 1.86

Full-band processing 2.37 2.54 2.70 2.86
PESQ 1-level analysis 2.38 2.55 2.72 2.90

2-level analysis 2.39 2.56 2.74 2.91
3-level analysis 2.40 2.57 2.75 2.93

Noisy 0.66 0.72 0.78 0.83
Full-band processing 0.84 0.87 0.89 0.90

STOI 1-level analysis 0.86 0.88 0.90 0.92
2-level analysis 0.87 0.89 0.91 0.92
3-level analysis 0.88 0.90 0.92 0.93

Table 2: Objective results using estimated AR parameters for
Kalman filtering under seen noise

-3dB 0dB 3dB 6dB
Noisy 1.41 1.52 1.68 1.86

Full-band processing 1.70 1.93 2.13 2.30
PESQ 1-level analysis 1.92 2.16 2.36 2.57

2-level analysis 1.81 2.05 2.27 2.50
3-level analysis 1.68 1.88 2.12 2.36

Noisy 0.66 0.72 0.78 0.83
Full-band processing 0.71 0.77 0.81 0.85

STOI 1-level analysis 0.72 0.78 0.84 0.87
2-level analysis 0.71 0.77 0.83 0.87
3-level analysis 0.69 0.75 0.82 0.86

3.3. Performance evaluation

Four existing algorithms are adopted as referebce methods to
compare with our proposed system (DNN-SKF). They are the
iterative Kalman filter (I-KF) [2], the perceptual Kalman filter
(P-KF) [3], the DNN assisted Kalman filter (DNN-KF) [10] and
the DNN based complex ideal ratio masking method (DNN-
CIRM) [9]. Since the traditional Kalman filters do not involve
a training stage for parameter estimation, experiments are con-
ducted on unseen noise only for fair comparison.

Table 3 shows the average objective scores of different
Kalman filter based algorithms. Obviously, DNN-KF and our
DNN-SKF outperform the other two traditional unsupervised
Kalman filter based algorithms, which indicates that the em-
ployment of DNN can provide more accurate LPCs estimates,
and thus improve the enhancement performance of Kalman fil-
tering. Moreover, our DNN-SKF has better objective scores
than DNN-KF in most cases. It can be inferred that the subband
Kalman filtering still works better even on unseen noise. Com-
paring the results of DNN-SKF in Table 3 with that in Table
2 (the 1-level analysis case under seen noise), the performance
under unseen noise does not decrease notably, which demon-
strates a good generalization capability of our DNN-SKF. Com-
paring DNN-SKF with DNN-CIRM, DNN-SKF achieves better
perceptual quality, while DNN-CIRM gives a better score of ob-
jective speech intelligibility.

At last, the spectrograms of the enhanced speeches result-
ing from the DNN-KF and the proposed DNN-SKF are plotted.
The selected noisy speech is corrupted by babble noise at 0 dB.
As shown in Fig.3, without subband analysis, Kalman filtering
removes the noise for the whole spectrum. The high-frequency
component of the DNN-KF enhanced speech, which has relative
low power, would be removed together with the noise and thus
suffers severe speech distortion. Contrarily, DNN-SKF, which
applies Kalman filtering for each subband signal, can better re-
tain the harmonic structures in high frequencies and the spec-
trogram exhibits a high similarity to the original one.

Table 3: Objective results of different enhancement methods un-
der unseen noise

-3dB 0dB 3dB 6dB
Noisy 1.37 1.51 1.65 1.82
I-KF 1.64 1.84 2.04 2.26

PESQ P-KF 1.67 1.88 2.09 2.32
DNN-KF 1.73 1.95 2.21 2.38

DNN-CIRM 1.77 2.01 2.23 2.43
DNN-SKF 1.87 2.10 2.33 2.55

Noisy 0.65 0.72 0.78 0.83
I-KF 0.68 0.75 0.81 0.85

STOI P-KF 0.69 0.76 0.81 0.85
DNN-KF 0.71 0.77 0.82 0.86

DNN-CIRM 0.71 0.78 0.85 0.89
DNN-SKF 0.71 0.78 0.83 0.88

Figure 3: Spectrograms of clean, noisy and enhanced speeches.

4. Conclusions
In this paper, a DNN assisted subband Kalman filtering system
has been proposed for speech enhancement, which first decom-
poses the noisy speech into subbands and then performs Kalman
filtering in each subband. A DNN has been introduced for LSFs
estimation in order to provide more accurate LPCs for Kalman
filtering. Experiments have shown that our system outperforms
several existing Kalman filter based algorithms. There are two
possible reasons behind this improvement. Firstly, the power-
ful learning ability of DNN helps to estimate LPCs with high
accuracy, Secondly, the subband Kalman filtering reduces the
speech distortion and efficiently removes the background noise
with respect to different frequencies.
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