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Abstract: In the common approach to EEG dipole 
modeling, one typically searches for the solution that fits 
best the observed data for a given number of sources. 
Instead of searching for this single ‘best’ solution, we 
propose a method that tests for each combination of a few 
dipoles to infer whether these are plausible sources given 
the observed EEG potentials. We use classical statistical 
tests, thus enabling us to list the sets of sources by order of 
significance and build probabilistic maps. We present the 
method followed by a simulation on a 2-dipole case. 
 
INTRODUCTION 

The spatial distribution of EEG potentials can be used to 
infer the location of neuronal sources of events such as 
epileptic spikes. However, the inverse problem is ill-posed 
which means that an infinite number of different source 
configurations can produce the exact same potentials on the 
scalp. This enforces the use of spatial constraints on the 
sources. One approach is to restrict the source model to just 
one or several current dipoles. In the noiseless situation, with a 
properly designed captor array, the solution would then be 
unique [1]. Unfortunately, in the real world situation the array 
is not ideal (sparse sampling and the captors only enclose the 
upper half of the brain) and the data are contaminated by 
noise. This results in an ambiguous problem. 

Traditionally, for a given potential distribution, one would 
select the maximum likelihood (ML) solution. For example, 
with the assumption of a white Gaussian additive noise, the 
ML solution is that which minimizes the residual sum of 
squares [2].  

Recently, Schmidt et al. [3] have suggested assessing the 
range of likely solutions. They used a Bayesian framework to 
generate a probability for each solution. They used Markov 
Chain Monte Carlo (MCMC) simulations to build statistical 
maps of the probability of a given point to contain a source.  

 
We propose here to consider solutions that consist of only 

one to three dipolar sources, which is probably a reasonable 
assumption in the case of epileptic spikes. We use a coarse 
grid (1 cm spacing), which is still a useful resolution in 
presurgical evaluation of epileptic patients and avoids MCMC 
computations by enabling a permutation approach. We present 
a method that evaluates the probability of a given combination 
of dipoles to be consistent with the measured potentials. This 
method tests the hypothesis that the model fits well the data 
but also that all dipoles in the combination are useful. This is a 
more strict rating of the combinations of sources than [3]. 

METHODS 
Probabilistic model 

We assume that the observed scalp potential distribution 
is the sum of the contributions of each source, 
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with: Y observed potentials (#electrodes x 1); n number of 
sources; θ source coordinates; A(n,θ) matrix (#electrodes x 
3n) containing 3 orthogonal unit dipoles per location; B 
source strength (3n x 1); E Gaussian noise with known 
covariance Σ (here the noise components are assumed to be 
independent and so Σ is diagonal).For a given (n, θ), we take 
the weighted least squares estimate of B, 
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which corresponds to the minimization of the weighted 
residual sum of square, 
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Test 1. With the assumption of known Gaussian noise, 
the likelihood of the data for a given set of parameters (i.e. 
we test that the model fits well the data) is: 
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with d= #electrodes, |Σ| determinant of Σ. 

Test 2. We test the significance of increasing the model 
order using an F-test. The SSQ given by (3) is tested against 
the best (minimum) SSQ at order (n-1) (i.e. we test that 
adding a dipole significantly improves the model). The test 
is: 
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following an F distribution with 3 and (d-3(n-1)) d.f. 
Test 3. We combine test 1 with examining the 

contribution from each dipole to the fit (i.e. we test that the 
model fits the data and that each individual source 
contributes significantly to the combination). This is done by 
replacing SSQmin

n-1 in (5) by the SSQ obtained by neglecting 
the contribution of this source. 

 
One can then build probabilistic maps by integrating 

solutions derived from these tests across the dipole 
combinations. 



 
Simulation 

We simulated two radial dipoles at location (x,y,z) =  
(-5, 5, 55) and (45, 5 ,45) within a three-sphere models with 
scalp, skull and brain radii of 92, 85 and 80mm respectively (x 
axis from back to front, y axis from right to left, z axis 
pointing up) (Fig. 1). We used 71 channels (10/10 system).  

We added one realization of white noise scaled so as to 
produce a SNR of 20 (linear scale). We tried all combinations 
of one, two and three dipoles on a grid (one sagittal plane, 1cm 
spacing, fig. 1). For each combination, we evaluated formula 
(4) and (5) and constructed two sets of maps, 
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with I{B}=1 if B is true, I{B}=0 if B is false; tf  threshold for 
the F-test at p=0.01 (no correction for multiple comparison); 
npts number of grid points (here, npts=140). 
Here,  tf (n=2) = F-1(p=0.01, df1=3, df2=71-6) = 4.09 
 tf (n=3) = F-1(p=0.01, df1=3, df2=71-9) = 4.11 
 
RESULTS 
Figure two presents the maps obtained on the simulated data 
for n=1,2 and 3. Map 1 has one peak for n=1, two peaks at the 
correct source locations for n=2 and n=3. Map 2 has only 3 
non-zero points for n=3 and the maximum F test value from 
(5) is much lower for n=3, showing that a model with 3 
sources does not improve significantly on the 2 sources model. 
The integration of test 3 produced very similar results to MAP 
1 (not shown). 
  

Fig. 1: Two dipoles inside the scalp sphere (x axis from back 
to front of the head). The scanning grid is shown with 
crosses. 
 
DISCUSSION 

We have presented an approach that uses statistical 
methods to assess possible sources to EEG potentials. The 
number of parameters has been minimized. This is somewhat 
contrary to the current tendency of trying to determine the 
source locations with a very high precision, a difficult task in 
a noisy situation. 

All three tests will provide information on the ambiguity 
of the problem, as the generated maps will become flatter 
with less information revealed when the problem is very ill-
defined. Test 2 offers additional information on the model 
order (number of dipoles) that is supported by the data. Test 
3 could reveal more selective than test 1 alone in some 
situations. 

Our simulation suggests that the use of model selection 
techniques is a relevant approach in the EEG inverse problem 
and can add information to the classical measure of 
likelihood. 
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Fig. 2. Probabilistic maps obtained on the simulated dipoles  
(SNR of 20). Upper row: map 1. Lower row: map 2. Columns: 
number of sources in the scanning.  
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