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Abstract—In this paper, we propose a single channel speech
enhancement algorithm using a subband iterative Kalman filter. A
wavelet filterbank is first used to decompose the noise corrupted
speech into a number of subbands. To achieve the best trade-
off among the noise reduction, speech intelligibility and com-
putational complexity, a partial reconstruction scheme based on
consecutive mean squared error is proposed to synthesize the low-
frequency (LF) and high-frequency (HF) subbands. An iterative
Kalman filter is then applied to the partially reconstructed HF
subband speech. Finally, the enhanced HF subband speech is
combined with the partially reconstructed LF subband speech to
reconstruct the fullband enhanced speech. Experimental results
show that the proposed subband iterative Kalman filter based
algorithm is capable of reducing adverse environmental noises
for a wide range of input SNRs. The overall performance of
our method in terms of segmental SNR, perceptual evaluation
of speech quality (PESQ) and computational cost is superior to
several existing Kalman filter based algorithms.

Keywords—Speech enhancement, Kalman filter, wavelet filter-
bank, subband decomposition, partial reconstruction.

I. INTRODUCTION

The main objective of speech enhancement (SE) is to
eliminate or reduce disturbing noises from a degraded speech.
SE has been widely used as a front end tool for speech
recognition, telecommunication etc. Various SE methods have
been introduced in the literature, including spectral subtraction
(SS) [1], Wiener filter (WF) [2], and Kalman filter [3]-[6].
The SS[1] and WF [2] methods have been widely used due
to their simplicity of implementation. However, these methods
suffer from the so-called musical noise that is introduced in
the enhanced speech.

Kalman filtering (KF) based on the minimum mean squared
error (MMSE) criterion have been used in SE. A subband
modulation KF based SE technique was proposed in [3], where
the noisy speech is decomposed into a number of subbands
followed by KF of each subband separately. However, the
application of KF to each subband increases the computational
complexity. Gibson et al. in [4] have proposed an iterative KF
based SE method, in which the noise variance is estimated dur-
ing silent periods, which implies that a voice activity detector is
needed. In [5]-[6], iterative KF for SE using overlapped frames
has been introduced. These methods however need access to
the clean speech and the additive noise signals for parameter
estimation.
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In this paper, we propose a subband iterative KF method
for SE. The noisy speech is decomposed first into a set
of subbands using a wavelet filterbank. A consecutive mean
squared error (CMSE) based synthesis method is proposed to
undertake a partial reconstruction of the decomposed subbands
into HF and LF subband speeches. Then, an iterative KF
is applied to the partially reconstructed HF subband, while
keeping the partially reconstructed LF subband unchanged,
since it mainly contains the intelligible speech components.
Finally, the enhanced speech of the HF subband produced
by the iterative KF is combined with the LF subband to
reconstruct the fullband enhanced speech.

II. PROPOSED METHOD

The noisy speech y(n) captured by a single microphone
can be written as

y(n) = s(n) +v(n) M

where s(n) and v(n) represent the clean speech and the
additive noise, respectively, at time n. The overall block-
diagram for the proposed method is shown in Fig. 1, and the
constituent modules are explained in the following subsections.

A. Wavelet Filterbank

A simple two-channel filterbank normally decomposes an
input signal into two parts: low-frequency and high-frequency
subbands. Each of the two subbands can be further divided
by using the same two-channel filterbank. One can con-
tinue this two-band division for several levels to implement
a wavelet packet tree decomposition, which provides more
detailed analysis of a non-stationary signal. It is important to
note that the wavelet packet coefficients at each subband can
be reconstructed independently by using the wavelet packet
reconstruction algorithm [7]. In addition, the length of the
reconstructed subband signals in samples is equal to that of
the given signal (at the same sampling rate). In the proposed
speech enhancement algorithm (SEA), 16 reconstructed sub-

bands, denoted as y;(n), ¢ = 1,2,...,16 are obtained using
a 4-level wavelet packet tree decomposition. Note that the
lowest subband index ¢ = 1 denotes the highest frequency

subband in this algorithm. Fig. 2 shows a noisy speech and the
corresponding 16 reconstructed subbands, where the subband
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Fig. 1. Block-diagram of the proposed method.
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Fig. 2. (a) Speech (combined 2 NOIZEUS speech sentences) corrupted by

babble noise (SNR=10dB), (b) the corresponding 16 reconstructed subbands.

signals are normalized with respect to their largest amplitudes.
In this work, we aim to synthesize the 16 subbands into two
major bands, HF and LF components. We will then apply KF
to the HF band for noise reduction.

B. CMSE Based Synthesis

Here, we use the mean square error between two consec-
utive normalized subbands, called consecutive mean square
error (CMSE), to decide what subbands are reconstructed into
the HF band for Kalman filtering. For each subband of L
samples, the CMSE is defined as

L
By = CMSE(ys (n)  yesa(n) = 7 3 (o (0) — g1 (n))?
n=1

@
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Fig. 3. The CMSE values corresponding to the normalized subbands in Fig.
2. The double circle indicates the js.

where k = 1,2,...,15 is the subband index, N is the number
of the subband speech samples. Our idea is to find k£ = j,,
the index of the last HF subband, such that no significant
difference between two consecuative CMSE values, namely
E; and E;_ .1, is observed. Specifically, we compute Ej, and
Ejyq for E=1,2,...,15 until their difference is sufficiently
small. Then such a value of k is denoted as js. This empirical
criterion is obtained from extensive experiments. Once the
value of j, is identified, the partially reconstructed HF and
LF subband speech signals are respectively given by

o () =3 win) @)
i=1

16

> wiln) “)

i=j.+1

yi(n) =

Fig. 3 shows the CMSE values for the 16 reconstructed
subbands of the noisy speech y(n) shown in Fig. 2. From Figs.
2 and 3, it is clearly observed that for this particular speech
segment, the 9t" gubband is the last subband to be used for
the partial reconstruction of the HF band. In general, the value
of js depends on the input speech samples, the noise types,
and the input SNR.

C. Proposed Subband Iterative Kalman Filter

The proposed subband iterative KF algorithm is applied
to yn(n) while keeping y;(n) unchanged. It is operated on a
frame-by-frame basis, including two loops, namely, the inner
and the outer loop. For each frame of N samples, in the
inner loop, the KF parameters are updated sample-by-sample
through an iterative procedure. The additive noise components
are reduced significantly when the inner loop is completed for
one entire frame. Then the linear prediction coefficients (LPCs)
and other state-space model (SSM) parameters are re-estimated
from the processed speech for the next inner loop iteration.
The outer loop iteration stops when the KF converges or the
preset maximum number of iterations is exhausted, giving the
further enhanced speech frame. This procedure will repeat for
subsequent frames until all the noisy speech frames have been
processed.

The SSM of the proposed subband iterative KF is repre-
sented by the following two equations, where the bold faced
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letters represent vectors or matrices
State Equation:

x(n) = dax(n — 1)+ H u(n) %)
Observation Equation:
z(n) = Ha(n) + v(n) ©)

Here x(n) is a P-dimensional state parameter vector at time
n which can be expressed in terms of the HF signal samples

x(n) = [yn(n —p+1) yn(n—p+2) yn(m)]" (D)

In (5), u(n) is called the process noise and ® is a P x P-
dimensional state transition matrix, which is given as

0 1 o ... 0
0 0 1 ... 0
®=|: : : R
0 0 o ... 1
ap Qap—1 QAp—2 ... Qa1

where a; is the it" LPC coefficient, P is the LPC order, and
H is the 1 x P observation row vector as given by

H=[0 0 0 ... 1].

In (6), z(n) is the noisy observation of the SSM and v(n) is the
measurement noise at time n. For each frame of N samples,
we set D as the maximum number of iterations. The proposed
iterative KF based SE is summarized below.

Estimate LPCs ag,k = 1,2,3,..., P, from the subband
noisy speech z(n). Let §§lo) =z(n),n=1,2,3,...,N.

For j =1 to D do [outer loop]
Initialization:
&9(0]0) = 0 (8)
Ew(j)(0|0) = [O]pxp ©)
0 1 0 0
0 0 1 ... 0
0 0 0 1
ap Ap—1 QAp—2 ... Q1

For n=1 to N do [inner loop]

Time update (predictor):

& (njn —1) =@z (n—1jn - 1) (11)
Ew(j)(n\n —1) = L 3E20 S 1jn — 1)(1)(j)T
+H"02H (12)

Measurement update (corrector):

eW(n) =591 — HzU)(n|n — 1) (13)
KD (n) =3,9 (n|n)HT (HE,9 (n|n)HT
+ 0_3)71 (14)

si:(j)(nln) - i(j)(n\n — 1)+ K9 (n)eW) (n) (15)
Zm(j)(nm) =(I- K(j)(n)H)Em(j)(n\n -1 (16)
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Estimate enhanced speech (at time n):

39 (n) = H&Y (n|n) (17)

End for [inner loop]
If |1 — kgj)”dp\ < 1 (where k%j) is the 15! element of
K'Y (n)) [KF Converges]

Output the enhanced speech §;,(n) and stop.
End for [outer loop]

Else

Re-estimate LPCs from the 4t processed frame
§£L])(n), giving a new set of az’s, k =1,2,3,..., P.

Repeat for [outer loop]

Other parameters required for KF are as follows

1) e(n) is the measurement innovation or prediction.

2) K(n) is the Kalman gain function.

3) Xz(n|n) is the error covariance matrix of the a
posteriori estimate, &(n|n).

The above procedure is repeated for the following frames until
the last one being processed, resulting in the enhanced HF
subband speech $p(n). Finally, the enhanced fullband speech
§(n) is obtained as

$(n) = 8n(n) + yi(n) (18)

D. Parameter Estimation

The LPC coefficients used in the subband iterative KF are
updated based on the partially enhanced speech in each frame
for a better accuracy. Fig. 4 shows the improved LPC power
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Fig. 4. Power spectra comparison between the clean speech (solid), degraded
speech (dotted), and improved (dashed) for babble noise (SNR = 0dB).

spectra (dashed), which can preserve the shapes of all the
four formants as compared to the clean speech LPC power
spectrum (solid). The noise variance o2 is estimated from
yn(n) using a method proposed based on the finite difference
approximation of Taylor series. The clean speech samples
given in equation (1) can be well approximated locally at any

point by a lower order polynomial, which can be thought of
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TABLE 1. DERIVATIVE TEMPLATES [8].

[ Template (w) | Differentiation Order |

[-11] First Derivative

[1-21] Second Derivative
[1-33-1] Third Derivative
[1-46-41] Forth Derivative

as a truncated local Taylor series approximation. Our idea is
to apply a finite difference operation to the truncated series so
that the lower order terms are eliminated, while leaving behind
mainly the additive noise components, from which the noise
variance is estimated. The differentiation can be represented
mathematically as a convolution of the noisy observation
with the derivative templates (see Table I) [8]. We apply the
difference operation to y,(n), namely,

=
gn(n) = i ; wliynn — 1] (19)
where w is the derivative template in TABLE I and M is the

length of w. Finally, 02 is estimated from §(n) using the

sample variance formula,
1N
2
=N E - i) (20)

where [ is the sample mean of g, (n) and N is the number of
sample points in the analysis speech.

Cl\)

III. EXPERIMENTAL RESULTS AND DISCUSSION

To evaluate the performance of the proposed algorithm, 30
speech utterances belonging to six speakers are taken from
NOIZEUS speech corpus database [9]. The speech is sampled
at 16 kHz and corrupted by white Gaussian, babble and car
noises taken from the Noisex-92 database [10]. The LPC order
is set to 8 and the wavelet ’symi3’ is used. The criteria used
for performance evaluation are the perceptual evaluation of
speech quality (PESQ) and segmental SNR (dB) [9]. The
PESQ takes values between 1 (worst) and 4.5 (best). The
performance of the proposed method (Proposed-SBIT-KF) is
compared with existing methods, namely, LPCs enhancement
in iterative KF (LPC-IT-KF) [6], and fast converging iterative
KF (FC-IT-KF) [5]. From Fig. 5, it is observed that the
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Fig. 5. Performance comparison between the proposed and existing methods
in terms of PESQ in the presence of (a): White, (b): Babble and (c): Car
noises for a wide range of input SNRs (-10dB to 15dB).

proposed method performs much better than the two existing
methods for all three noises in terms of PESQ. The segmental
SNR results presented in Fig. 6 also show that the proposed
method performs better than the existing methods.
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Fig. 6. Performance comparison between the proposed and existing methods
in terms of segmental SNR (dB) in the presence of (a): White, (b): Babble
and (c): Car noises for a wide range of input SNRs (-10dB to 15dB).

IV. CONCLUSIONS

In this paper, we have proposed an efficient single channel
SE algorithm using subband iterative KF. A wavelet filterbank
has been used to generate 16 reconstructed subbands of the
noisy speech. An iterative KF has then been applied only to the
HF subband speech that is obtained by using the CMSE syn-
thesis method for noise reduction. The LPC coefficients used
in KF were updated based on the partially enhanced speech in
each frame for a better accuracy. By using a truncated Taylor
series expansion of the partially reconstructed HF subband
speech along with a difference operation serving as a high-
pass filter, a method for the noise variance estimation was also
proposed. The proposed method not only provides a superior
SE performance but also reduces the computational complexity
of conventional subband KF based methods. Through extensive
simulation studies, we have found that the proposed method
works effectively in adverse noise environments for a wide
range of input SNRs, and outperforms several existing SE
methods in literature.
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