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Abstract—In this paper, we present a novel deep neural
network (DNN) based Kalman filter (KF) algorithm for speech
enhancement, where DNN is applied for estimating key parame-
ters in the KF, namely, the linear prediction coefficients (LPCs).
By training the DNN with a large database and making use
of the powerful learning ability of DNN, our proposed DNN-
KF algorithm is able to estimate LPCs from noisy speech more
accurately and robustly, leading to an improved performance
as compared to traditional KF based approaches in speech en-
hancement. Experimental results demonstrate that our DNN-KF
method outperforms two existing KF based speech enhancement
methods in terms of both speech quality and intelligibility.

Index Terms—speech enhancement, Kalman filter, deep neural
network

I. INTRODUCTION

Speech enhancement (SE) has been extensively applied in a
wide range of fields such as speech recognition, wireless com-
munications, hearing aids and smart home devices, where the
received input speech signals are often corrupted by different
kinds of noises. The main purpose of SE is to improve speech
quality and intelligibility, so as to obtain better user experience
in those applications. Several methods have been put forward
over the past decades, among which frequency-domain and
time-domain algorithms are two prominent categories.

Frequency-domain algorithms nomally involve transforming
the noisy speech into the frequency-domain via the discrete
Fourier transform (DFT), and then approximating the clean
speech spectrum based on the observed noisy spectrum. Fi-
nally, the estimated clean spectrum is then converted back to
the time-domain by the inverse DFT. Within this category,
Wiener filtering [1] and minimum mean square error (MMSE)
amplitude estimators [2] are two of the most well-known
techniques. Both of them are capable of estimating the spectral
amplitude of clean speech, but their enhanced speech output
usually suffers from musical and residual noise, due in part to
the combination of the noisy phases with the estimated clean
amplitudes during the reconstruction process.

In time-domain algorithms, the SE problem is viewed as a
filtering problem, in which the enhancement filter is designed
to reduce the additive noise corrupting the speech without
introducing noticeable distortion in the enhanced speech out-
put. Unlike most of the frequency-domain algorithms which
only enhance the amplitude, time-domain algorithms implicitly
enhance both amplitude and phase at the same time. The

Kalman filter (KF) based on MMSE criterion [3] is a well-
known time-domain SE method, in which the speech is mod-
eled as an autoregressive process and the enhanced speech
is obtained by Kalman filtering. In this context, the linear
prediction coefficients (LPCs) are important parameters for the
implementation of KF.

Early KF based algorithms such as [3] were limited to
the reduction of white Gaussian noise, while the LPCs were
predicted from the clean speech, which is, however, not
accessible in practical applications. To overcome this obstacle,
Koo and Gibson [4] suggested an approximate expectation-
maximization (EM) algorithm that iterates between Kalman
filtering of noisy samples and estimation of the speech pa-
rameters. To further improve the accuracy of the estimated
parameters, several methods [5]–[8] were advanced recently,
such as LPC-based formant enhancement [5] and codebook
based KF approach [6]. These methods, which attempt to
reduce the sensitivity of LPC prediction in the presence of
noise, lead to better SE results.

Subband based KF algorithms have also been studied to
further improve the SE performance. In [9], a subband it-
erative KF method was proposed wherein the noisy speech
is decomposed into high-frequency (HF) and low-frequency
(LF) subband components. An iterative KF is then applied
in the HF subband, while the LF subband unprocessed, on
the basis that the LF subband mainly contains the intelligible
speech components; consequently, this approach cannot reduce
non-negligible noise contained in the LF component. In [10],
to address this limitation, a voice activity detection based
adaptive threshold scheme is applied to each subband frame
as pre-processing, and an iterative KF is then employed in
each subband for further noise reduction. Experiments have
shown that these subband KF algorithms can outperform their
fullband counterparts.

In recent years, the deep neural network (DNN) based
methods have produced solutions to complex problems that
were previously unattainable with traditional signal process-
ing techniques. In particular, the application of DNN to the
SE problem has led to significant breakthroughs [11]–[13].
DNN based SE algorithms operate mostly in the frequency
domain, and reconstruct the enhanced speech by combining
the estimated speech magnitude with the phase of the noisy
observations.

In this paper, a DNN based KF is proposed for time-
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domain speech enhancement, where DNN is trained to learn
the relationship between the line spectrum frequencies (LSFs)
of the noisy speech and those of the clean speech.. The
estimated LSFs of the clean speech are transformed to LPCs
and then applied into a KF for SE. In contrast to the afore-
mentioned DNN based algorithms, our method operates in
the time-domain and enhances both speech magnitude and
phase. Apparently, the use of DNN as opposed to traditional
processing methods allows a more accurate estimation of
the clean speech’s LPCs. Experimental results under various
conditions of noise show that our proposed DNN based KF
method can yield better speech quality and intelligibility than
previous subband iterative KF based algorithms.

II. KALMAN FILTER FOR SPEECH ENHANCEMENT

A. Speech Models

Consider a time-domain noisy speech y (n) as given by

y (n) = s (n) + w (n) (1)

where s (n) and w (n) represent the clean speech and the
additive noise respectively. In KF based SE algorithms, the
clean speech signal s (n) is usually considered as the output
of an autoregressive (AR) process. The p-th order AR speech
model is represented as follows,

s (n) =

p∑
i=1

ais (n− i) + v (n) (2)

where ai are LPCs of the speech and v (n) is the driving white
noise with variance σ2.

To facilitate the presentation of KF based SE, we make use
of matrix notation and introduce the following vectors: the
speech state vector u (n), noisy speech vector y (n), additive
noise vector w (n) and driving noise vector v (n), which are
respectively given by

u (n) = [s (n− p+ 1) , . . . , s (n− 1) , s (n)]
T

y (n) = [y (n− p+ 1) , . . . , y (n− 1) , y (n)]
T

w (n) = [w (n− p+ 1) , . . . , w (n− 1) , w (n)]
T

v (n) = [v (n− p+ 1) , . . . , v (n− 1) , v (n)]
T

(3)

using the transition matrix F as defined by

F =


0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1
ap ap−1 ap−2 · · · a2 a1

 (4)

A speech signal is then expressed as{
u (n) = Fu (n− 1) +Gv (n)
y (n) = Hu (n) +w (n)

(5)

where H is a pth order identity matrix and G =
[0, · · · , 0, 1]T ∈ Rp.

B. Process Equations

The process of recovering the desired signal from the
observed noisy speech can be seen as a Kalman filtering
problem [3], which can be summarized by the following
equations

e (n) = y (n)−GT û (n|n− 1)

K (n) = P (n|n− 1) (Rw + P (n|n− 1))
−1

û (n|n) = û (n|n− 1) +K (n) e (n)
P (n|n) = (I −K (n))P (n|n− 1)
û (n+ 1|n) = F û (n|n)
P (n+ 1|n) = FP (n|n)FT + σ2

vGG
T

(6)

where e (n) is the innovation, K (n) the Kalman gain matrix,
û (n|n) the filtered estimate of state vector u (n), û (n|n− 1)
the MMSE estimate of the state vector u (n) given the past
observations y (1) , . . . , y (n− 1), P (n|n) the filtered state
error covariance matrix, and P (n|n− 1) the predicted state
error correlation matrix. The speech estimate at discrete-time
n can finally be given by

ŝ (n) = GT û (n|n) (7)

It can be seen from the above equations that several param-
eters should be calculated before performing Kalman filtering.
Those parameters include the driving noise variance σ2, the
covariance matrix of the additive noise Rw, and the transition
matrix F which contains the LPCs of the speech signal model.

III. PROPOSED SPEECH ENHANCEMENT SYSTEM

The overall block diagram of our DNN based SE system
with KF is depicted in Fig.1. It consists of two stages, namely:
training stage and enhancement stage. In the training stage, a
DNN is trained to learn the mapping from the noisy LSFs
to the clean ones. In the enhancement stage, a KF with the
the DNN-based estimated parameters is applied to the noisy
speech to obtain the enhanced speech.

Fig. 1. A bolck diagram of proposed speech enhancement system.
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A. Training Stage

LPCs are calculated using both noisy and clean speech
databases, and then converted into LSFs. The noisy LSFs are
used as input features to the DNN, while the clean LSFs are
used as output targets for the DNN. The reason for using LSFs
instead of LPCs in our algorithm is that LSFs have a well-
behaved dynamic range, while LPCs have a large dynamic
range of values. Therefore, the stability of the training stage
is easier to guarantee in the LSF domain [14].

In order to better explore the relationship between the noisy
and clean LSFs, we would first like to investigate the use of
other possible acoustic features in combination with the LSFs
to form an extended input feature set. In [15], the following
four feature types are shown to have good performance when
acting as input to DNN. They are amplitude modulation
spectrum (AMS); the relative spectral transform and perceptual
linear prediction (RASTA-PLP); the Mel-frequency cepstral
coefficients (MFCC) and their deltas; the Gammatone filter-
bank energies (GF) and their deltas. Then, we will investigate
the performance when these feature types are combined with
LSFs as our input feature set.

For supervised training, the architecture adopted in our
method is a feedforward neural network with many levels of
non-linear units to represent a highly non-linear regression
function that maps noisy LSFs to clean ones. As Fig. 2 depicts,
our DNN is composed of one input layer, one output layer
and three hidden layers with 1024 units in each layer. This
structure has been verified to yield the best results in [14].
The rectified linear unit (ReLU) model is employed for the
hidden layers, while the linear model is used for the output
layer.

Fig. 2. Structure of the proposed DNN for LSF estimation..

Back propagation with the MMSE-based cost function be-
tween the estimated clean LSFs and the reference clean LSFs
is adopted to train the DNN. During the training, our DNN
can automatically learn the complex mapping from noisy LSFs
to clean LSFs given sufficient training samples. The well-
trained DNN will be used in the enhancement stage to obtain
estimated clean LSFs from the noisy LSFs.

B. Enhancement Stage

Considering an unknown input noisy speech, the Kalman
filtering parameters need to be calculated beforehand to em-
ploy our DNN based KF speech enhancement method.

At first, the covariance matrix can be approximately esti-
mated during the speech-absent frames:

Rw = E
[
w (n)wT (n)

]
(8)

Then according to [7], the variance of the driving noise v(n)
can be estimated by means of:

σ2
v = E

[
y(n)2

]
− ry

Tâ− σ̂2
w (9)

where ry = E
[
y (n) yT (n)

]
, â is the LPC vector and σ2

w is
the variance of additive noise.

The proposed DNN based KF algorithm is described as
follows: estimating clean LSFs from noisy LSFs with the
proposed DNN, and then converting them to LPCs to form
the state transition matrix F . Then we compute the covariance
matrix of the measured noise using (8), and the driving noise
variance using (9). At last, performing the Kalman filtering
defined in (4) to obtain û (n|n). Finally, The enhanced speech
is given by: ŝ (n) = GT û (n|n).

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

In this study, the clean speech is selected from the IEEE
corpus [16]. We choose 670 utterances for training and 50
utterances for testing. Six types of noises are picked from
NOISEX-92 database [17]. Among them four types (babble,
white, street, factory) are regarded as seen noises, and the
other two (pink, car) as unseen noise. In the training stage,
the noisy speech are obtained by mixing clean training speech
with seen noises at four levels (-5dB, 0dB, 5dB, 10dB) of
signal-to-noise rates (SNRs) , which results in 10720 utter-
ances. In the enhancement stage, both seen noises and unseen
noises are mixed with clean testing speeches at the above
four SNR levels. The number of noisy utterances used in
enhancement stage is 800 for seen noise and 400 for unseen
noise, respectively. The sampling frequency for the speech and
noise signals is set to 16kHz. A rectangular window is used
to divide the audio signals into 20 ms frames with no overlap.
In the implementation of the KF algorithm we initialize with
u(0|0) = 0 and P (0|0) be identity matrix, and set the speech
AR order p = 12.

To assess the enhancement performance, two objective met-
rics are adopted in our experiment: the perceptual evaluation
of speech quality (PESQ) [18] and the short-time objective
intelligibility (STOI) [19]. PESQ focuses on evaluating speech
quality while STOI provides a measure of speech intelligibil-
ity.

B. Feature Set

At first, we investigate three different input feature sets
in order to learn the best possible mapping between the
noisy and clean LSFs. Specifically, we consider the follow-
ing: the LSF-only set, the multi-feature set (AMS+RASTA-
PLP+MFCC+GFCC) in [15], and the joint set, which is
formed by combining the LSF-only set with the multi-feature
set. The objective assessment results of the enhanced speech
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TABLE I
OBJECTIVE RESULTS WITH DIFFERENT FEATURE SETS

-5dB 0dB 5dB 10dB
Noisy 1.26 1.53 1.79 2.12

PESQ LSF-only Set 1.53 1.97 2.30 2.56
Multi-feature Set 1.58 2.01 2.37 2.61

Joint Set 1.62 2.03 2.41 2.65
Noisy 0.62 0.72 0.82 0.89

STOI LSF-only Set 0.63 0.74 0.82 0.87
Multi-feature Set 0.66 0.76 0.84 0.88

Joint Set 0.67 0.77 0.84 0.89

when using the above three feature sets as DNN input are
shown in Table I.

It is observed that the enhanced speech from the joint set
achieves the highest PESQ and STOI scores; this is because the
joint set with more acoustic features contains more information
about the speech, where each feature has its own advantages.
As a result, the joint set is selected to be our feature set in the
remaining experiments.

C. Results and Comparison

Controlled experiments are conducted to evaluate our pro-
posed DNN-KF algoirthm. Two existing KF based SE al-
goirthms are adopted as reference methods for comparison,
i.e.: the subband iterative KF (S-IKF) [9] and the adaptive
threshold iterative KF (AT-IKF) method [10].

a) Seen noises: Table II gives the average objective score
of different KF based SE algorithms on seen noises. Obviously,
the DNN-KF outperforms the other two KF algorithms in
most cases. It can be inferred that using DNN for predicting
clean LPCs contributes to improving the performance of KF
based SE algorithms. However, the S-IKF gives the best STOI
score in the case of input SNR 10dB. This improvement of
speech intelligibility is achieved by the subband processing in
the S-IKF. Although our DNN-KF does not employ subband
processing, it still yields good STOI scores.

TABLE II
OBJECTIVE RESULTS ON SEEN NOISY SPEECHES

-5dB 0dB 5dB 10dB
Noisy 1.26 1.53 1.79 2.12

PESQ S-IKF 135 1.67 1.97 2.28
AT-IKF 1.37 1.69 2.04 2.37

DNN-KF 1.62 2.03 2.41 2.66
Noisy 0.62 0.72 0.82 0.89

STOI S-IKF 0.62 0.73 0.82 0.90
AT-IKF 0.54 0.65 0.75 0.82

DNN-KF 0.67 0.77 0.84 0.89

b) Unseen noises: Table III shows the average objec-
tive scores of different KF based SE algorithms on unseen
noises. Firstly, the highest results demonstrate that the DNN-
KF gives the best performance even under the unseen noise
environment. Compared to seen noise, the improvements of the
objective score on the enhanced speech decrease a bit, because
the prediction error of LPCs increases under the case of unseen
noise. Benefiting from the large training database, it can
also be found that the performance of DNN-KF is relatively

stable under different background noises in comparison with
other two KF methods. In addition, the S-IKF achieves better
performance than AT-IKF in these two unseen noises because
the threshold of AT-IKF can not be accurately set, especially at
low SNR. At last, it should be mentioned that the noisy speech
has the best STOI score when the input SNR is 10dB, which
means the KF based SE algorithms introduce distortion to
the desired speech while reducing noises. Although the STOI
scores of DNN-KF drop for unseen noise, they still remain
high, indicating a good speech intelligibility.

TABLE III
OBJECTIVE RESULTS ON UNSEEN NOISY SPEECHES

-5dB 0dB 5dB 10dB
Noisy 1.30 1.54 1.84 2.19

PESQ S-IKF 1.38 1.62 1.93 2.23
AT-IKF 1.25 1.60 1.95 2.30

DNN-KF 1.57 2.04 2.39 2.63
Noisy 0.60 0.70 0.81 0.89

STOI S-IKF 0.60 0.71 0.81 0.89
AT-IKF 0.51 0.64 0.74 0.81

DNN-KF 0.63 0.74 0.82 0.88

V. CONCLUSION

In this paper, DNN has been introduced to improve the
performance of traditional KF based SE algorithm. It has
been employed to estimate clean LPCs from noisy speech
feature set. Due to DNN’s powerful learning ability, our
DNN-KF algorithm achieves better speech quality as well
as intelligibility compared to the existing S-IKF and AT-IKF
algorithms. In addition, with the help of large training data,
our DNN-KF is more robust when the speech is corrupted by
different noises.
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