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Abstract—In this paper, we present a deep neural network
(DNN) based algorithm to restore the high-frequency (HF)
component of the enhanced speech processed by Kalman filtering,
where the DNN is applied for estimating the magnitude of
HF component from the low-frequency (LF) counterpart. The
complete HF component is then computed with the estimated
magnitude given by the DNN and the phase of the Kalman
filtered speech. By incorporating our restoration algorithm into
Kalman filter based speech enhancement method, our new speech
enhancement system is able to recover the HF component with
better perceptual quality and less distortion. Experimental results
demonstrate that the proposed method outperforms the state-
of-the-art Kalman filter based method in terms of both speech
quality and intelligibility.

Index Terms—speech enhancement, Kalman filter, deep neural
network, speech bandwidth expansion

I. INTRODUCTION

To achieve better speech quality and improve user experi-
ence in speech processing related applications, such as speech
recognition, hearing aids and smart home devices, speech
enhancement has been often adopted as pre-processing to
remove the background noises. Various methods have been
proposed in the past few decades, among which Kalman
filtering has been of great interest since it is able to process
non-stationary noisy speech and produce enhanced speech
without musical noise.

In Kalman filter based methods, the auto-regressive model
is widely adopted as the speech production model and is
incorporated in the Kalman recursion equations. As such, the
performance of Kalman filtering is considerably dependent on
the accuracy of the parameter estimation, i.e., linear predic-
tion coefficients (LPCs) and excitation variance. A piece of
pioneering work employing Kalman filter to remove white
Gaussion noise was found in [1], which achieves better per-
formance as compared with the Wiener filter [2]. It should be
pointed out that the parameters involved in the Kalman filter in
[1] are extracted from the clean speech rather than the noisy
speech, which is not available in practical applications. On
the other hand, directly computing the parameters from the
corrupted speech would be inaccurate and unreliable, leading
to a performance degradation. As such, several algorithms have
been proposed to estimate the parameters.

The authors in [3]–[5] have proposed to estimate online
the speech parameters and enhanced speech simutaneously

from the noisy observations. In particular, the expectation-
maximization (EM) algorithm in [3] is the most typical proce-
dure, that iterates between Kalman filtering of noisy samples
and estimation of the speech parameters. In each iteration the
Kalman filter enhances the speech to obtain better parameter
estimation, and this method generally improves the final results
after a few iterations. Other researchers such as those in [6]–
[8] used an off-line training approach to predict the speech
parameters based on a training database beforehand. Recently
in [8], a deep neural network (DNN) is utilized to explore
the relationship between the speech parameters of the noisy
speech and those of clean speech. By taking advantages of
the powerful learning capability of a deep model and a large
training database, the DNN based Kalman filtering achieves
significant improvement over conventional iterative Kalman
filter [9].

Despite the performance gain from the Kalman filter based
methods, it is found that the enhanced speech suffers from
the loss or attenuation of its high-frequency component. To
address this problem, subband Kalman filters have been inves-
tigated in [9], [10], wherein the noisy speech is decomposed
into high-frequency (HF) and low-frequency (LF) components.
The iterative Kalman filters with different parameters are then
applied into the HF subband and LF subband separately. Ex-
perimental results demonstrate that the subband Kalman filter
algorithm outperforms the fullband counterpart. However, the
HF component is still suppressed relative to the LF component.
In other words, the desired speech in the HF subband is
removed together with the noise when conducting Kalman
filtering.

In this paper, we propose a HF component restoration algo-
rithm for Kalman filter based speech enhancement to further
improve the performance. Inspired by the speech bandwidth
expansion [11], the Kalman filtering denoised speech is first
divided into HF and LF components. The LF component,
which is considered to be of good quality, is then used
to restore the HF component. At last, the enhanced speech
is resynthesised by the LF component of the Kalman filter
denoised speech and the recovered HF component. For the
HF component restoration, a DNN is trained to learn the
relationship between the log-magnitude of the LF component
and that of the HF component. The full HF component is
reconstructed with the estimated magnitude and the phase of
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the Kalman filter denoised speech. Experimental results show
that our improved Kalman filter based speech enhancement
method yields better speech quality and intelligibility than the
one without HF component restoration.

II. KALMAN FILTER BASED SPEECH ENHANCEMENT

A. Autoregressive Speech Model

Before introducing Kalman filtering, speech models should
be defined first. The first one is the noisy speech model y (n),
which can be regarded as a mixture of the clean speech s (n)
and the additive noise w (n),

y (n) = s (n) + w (n) (1)

where n is the discrete time index.
Secondly, the clean speech s (n) is usually represented by a

source-filter model in Kalman filter based method. A widely-
adopted model is the autoregressive (AR) form,

s (n) =

p∑
i=1

ais (n− i) + v (n) (2)

where ai are LPCs of the speech, p the order of the model,
and v (n) the driving white noise with variance σ2.

B. Kalman Filtering

The speech models are expressed in matrix and vector
notations to facilitate the presentation of the Kalman filter
based speech enhancement, namely,{

u (n) = Fu (n− 1) +Gv (n)
y (n) = Hu (n) +w (n)

(3)

where the transition matrix F is given by

F =


0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1
ap ap−1 ap−2 · · · a2 a1

 , (4)

H is a pth order identity matrix and G = [0, · · · , 0, 1]T ∈ Rp.
Moreover, u (n) denotes the speech state vector, y (n) the
noisy speech vector, w (n) additive noise vector and v (n)
driving noise vector, which are respectively given by

u (n) = [s (n− p+ 1) , . . . , s (n− 1) , s (n)]
T

y (n) = [y (n− p+ 1) , . . . , y (n− 1) , y (n)]
T

w (n) = [w (n− p+ 1) , . . . , w (n− 1) , w (n)]
T

v (n) = [v (n− p+ 1) , . . . , v (n− 1) , v (n)]
T

(5)

The denoising process of the Kalman filtering is summa-
rized by the following equations

e (n) = y (n)−GT û (n|n− 1)

K (n) = P (n|n− 1) (Rw + P (n|n− 1))
−1

û (n|n) = û (n|n− 1) +K (n) e (n)
P (n|n) = (I −K (n))P (n|n− 1)
û (n+ 1|n) = F û (n|n)
P (n+ 1|n) = FP (n|n)FT + σ2

vGG
T

(6)

where e (n) is the innovation, K (n) the Kalman gain matrix,
û (n|n) the filtered estimate of state vector u (n), û (n|n− 1)
the estimate of the state vector u (n) given the past samples
y (1) , . . . , y (n− 1), P (n|n) the filtered state error covariance
matrix, and P (n|n− 1) the predicted state error correlation
matrix. The denoised speech d (n) is finally given by

d (n) = GT û (n|n) (7)

C. Parameter Estimation

Several parameters in the above equations should be esti-
mated accurately in order to achieve excellent performance of
Kalman filtering. Those parameters include the driving noise
variance σ2, the covariance matrix of the additive noise Rw,
and the transition matrix F which contains the LPCs of the
speech signal model.

At first, we adopte the DNN based algorithm presented in
[8] for the LPCs prediction, in which LPCs are calculated from
speech databases and converted into line spectrum frequencies
(LSFs). A DNN is then trained off-line for learning the
relationship from the noisy feature set (including noisy LSFs
and other four acoustic features) to clean LSFs. The estimated
LSFs are predicted by the well-trained DNN and transformed
back to LPCs for performing Kalman filtering.

Secondly, the covariance matrix can be approximately esti-
mated during the speech-absent frames:

Rw = E
[
w (n)wT (n)

]
(8)

Finally, according to [4], the variance of the driving noise
v(n) can be estimated by means of:

σ2
v = E

[
y(n)2

]
− ry

Tâ− σ̂2
w (9)

where ry = E
[
y (n) yT (n)

]
, â is the LPC vector and σ2

w is
the variance of additive noise.

III. PROPOSED SPEECH ENHANCEMENT SYSTEM

The overall block diagram of our speech enhancement
system with Kalman filtering and HF component restoration
is depicted in Fig.1. The system is composed of the off-
line training stage and the enhancement stage. In the training
stage, a DNN is trained to learn the mapping from the log-
magnitude of the LF component to that of HF component for
clean speech. In the enhancement stage, the noisy speech is
first processed by a Kalman filter to obtain denoised speech.
Subband analysis is followed to decompose the denoised
speech into HF and LF components. Then, the estimated
HF component is recovered with the estimated magnitude
predicted by the well-trained DNN and the phase from the
denoised speech. Finally, the enhanced speech is obtained by
an combination of the estimated HF component and the LF
component of the denoised speech.

A. Training Stage

Before training the DNN, the clean speech s(n) is di-
vided into HF component sH(n) and LF component sL(n)
by subband analysis. The corresponding short-time Fourier
transform (STFT) spectrograms are defined by SH(k, l) and
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Fig. 1. A block diagram of proposed speech enhancement system.

SL(k, l), with k and l denote the frequency bin and frame
index, respectively. For simplification, the index k and l will
be omitted in the remaining discussion. The magnitude of SL
is extracted as the input feature of DNN, while that of SH
is set as the training target. Since the magnitude spectrum
usually has a very large dynamic range, the log-function and
normalization are adopted to compress both the feature and
target for better training.

Besides the feature of the current frame, the neighbouring
time frames are incorporated to form an extended feature set,
in order to make full use of the temporal information of the
speech. As such, the feature vector centred at the kth frame
is defined by F̃ (k) = [F (k − p) , . . . ,F (k) , . . . ,F (k + p)],
with p donating the number of neighbouring frames involved
on each side.

A fully-connected feed-forward DNN as depicted in Fig.2
is employed for training. The DNN has three hidden layers
with 1024 units in each layer between the input layer and the
output layer. The activation function used in the hidden layer
is the rectified linear unit (ReLU), while a linear function is
used in the output layer

To update weights and biases until the network is able
to achieve good performance, back propagation following a
gradient-based optimization algorithm is commonly adopted.
Back propagation computes the gradient, whereas stochastic
gradient descent uses the gradients to train the DNN model,
so as to minimize the value of the cost function, which is
defined as the mean square error between the reference and the
estimated log-magnitude spectrogram of the HF component

MSE =
1

M

M∑
m=1

[(
ln|ŜH | − ln|SH |

)2]
(10)

where M denotes the speech frames, |ŜH | the estimated
magnitude and |SH | the reference one. The well-trained DNN

Fig. 2. Structure of the proposed DNN for HF component magnitude
estimation.

will be used in the enhancement stage to obtain the estimated
magnitude of the HF component from that of the LF compo-
nent.

B. Enhancement Stage

The procedure of the proposed speech enhancement system
can be briefly summarized as following steps. Firstly, Kalman
filtering introduced in Section II is applied to the noisy speech
y(n) for denosing in time-domain. The denoised speech d(n)
is then decomposed into HF component dH(n) and LF com-
ponent dL(n) by subband analysis.

Secondly. the aforementioned DNN based HF component
restoration algorithm is required to compensate the distortion
in dH(n). Here, the LF component of the denoised speech
is employed as input in restoration for the reason that the
LF component is of high quality after Kalman filtering. The
STFT spectrogram D̂H of the recovered HF component is
reconstructed with the estimated magnitude given by the well-
trained DNN and the phase of dH(n), i.e., D̂H = |D̂H |ejφdh .
The inverse STFT is performed to achieve the estimated HF
component d̂H(n).

Finally, the enhanced speech ŝ(n) is synthesised with the
unprocessed LF component dL(n) and the recovered HF
component d̂H(n), i.e., ŝ(n) = dL(n) + d̂H(n).

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

The IEEE corpus [12] is selected as clean speech database,
in which 670 utterances are used for training and 50 utterances
for testing. Four types of noises (pink, buccaneer2, destroy-
erengine, hfchannel) are picked from NOISEX-92 database
[13] and mixed with the clean speech at four levels (-3dB, 0dB,
3dB, 6dB) of signal-to-noise ratio (SNR). In training stage, the
DNN is trained only on clean speech database to explore the
relationship between its LF and HF components. Since 670
utterances are not enough for deep learning, we repeat them
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for 16 times to get 10720 utterances. In the enhancement stage,
four noises are mixed with 50 clean testing speeches at the
above four SNR levels. Thus, the number of noisy utterances
in enhancement stage is 800. The sampling frequency for the
speech and noise signals is set to 16 kHz. The window size
of STFT is 320 with 50% overlap.

We compare the proposed new system with the conventional
subband iterative Kalman filter (denoted as S-IKF) [9] and
the recent DNN based Kalman filter [8] (denoted as DNN-
KF), to verify the benefit of incorporating the HF component
restoration. For fair comparison, the configuration in the
Kalman filtering part of the new system is kept the same as in
[8]. As such, the proposed new system can be regraded as the
combination of the DNN-KF and HF component restoration.
Two objective metrics are adopted in our experiment to assess
the enhancement performance: the perceptual evaluation of
speech quality (PESQ) [14] and the short-time objective intel-
ligibility (STOI) [15]. PESQ is widely adopted in evaluating
speech quality, while STOI is proved to be highly related to
speech intelligibility.

B. Results and Comparison

Table I shows the average objective scores of the processed
speeches. First of all, both the DNN-KF and proposed method
show better overall performance than the S-IKF, and the
improvement reflects the superiority of using DNN to predict
LPC for Kalman filtering. In addition, it is shown that the
speeches from the proposed system have better PESQ and
STOI scores than DNN-KF, which demonstrates the advantage
of introducing the HF component restoration. Finally, by
comparing the results between the enhanced speeches from the
proposed method with respect to input SNRs, it can be found
that the improvement is greater at high SNRs. One possible
reason for this phenomenon is that the quality of the denoised
speech at high SNRs is better than the one at low SNRs, which
is beneficial to the restoration of the HF component.

TABLE I
OBJECTIVE RESULTS ON NOISY SPEECHES

-3dB 0dB 3dB 6dB

Noisy 1.37 1.51 1.65 1.82
S-IKF 1.52 1.68 1.83 2.00

PESQ DNN-KF 1.73 2.01 2.21 2.38
Proposed 1.74 2.03 2.25 2.43

Noisy 0.65 0.72 0.78 0.83
S-IKF 0.66 0.73 0.79 0.84

STOI DNN-KF 0.71 0.77 0.82 0.85
Proposed 0.72 0.79 0.84 0.87

In order to better illustrate the benefits of the HF restoration,
the spectrograms of the enhanced speeches resulting from
the DNN-KF and proposed method are plotted and compared
in Fig.3. Comparing with DNN-KF, whose HF component
is significantly suppressed, the proposed method gives better
spectrogram of the processed speech that is similar to the orig-
inal one in HF component. The high clarity of the harmonics

in the HF component of our enhanced speech also indicates
the superiority of HF component restoration.

Fig. 3. Spectrograms of the clean, noisy and enhanced speeches.

V. CONCLUSION

In this paper, a DNN based HF component restoration
algorithm has been proposed to improve the performance of
Kalman filter based speech enhancement method, where the
DNN is employed to explore the relationship between the
magnitude of the LF component and that of the HF component.
Benefiting from the HF component restoration, our new speech
enhancement system is able to reduce the distortion in the HF
component of the denoised speech, leading to a better speech
quality as well as intelligibility compared to the existing DNN-
KF method.
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