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Abstract—Speech exhibits strong dependencies among its sam-
ples in both time and frequency domains. In this paper, we pro-
pose a low-complexity composite model for speech enhancement
(SE) that integrates a convolutional neural network (CNN) and
a long short-term memory (LSTM) network. These two modules
take full advantage of the spectral and temporal information
of input speech and extract in parallel a complementary set
of features. The CNN is enabled to capture non-local spectral
information via dilated frequency convolutions. It also incorpo-
rates an attention mechanism to recalibrate its weights without
imposing considerable additional complexity. A grouping strategy
is adopted for LSTM implementation to reduce its complexity
while keeping performance almost unchanged. Our composite
model is carefully designed to address concerns in real-time ap-
plications including limited computational resources, low-latency
processing, and causal architecture. Through extensive and com-
parative simulation studies, it is shown that the proposed model
significantly outperforms some other DNN-based SE methods in
the recent literature.

Index Terms — speech enhancement, dilated convolution,
grouping strategy, attention technique, low complexity.

I. INTRODUCTION

In real-world environments, clean speech is often corrupted

by ambient noise. Speech enhancement (SE) as a key area of

speech processing focuses on removing the noise component

from the noisy speech to improve user experience. SE is

essential yet highly demanding for numerous applications such

as mobile speech communication, hearing prosthesis, robust

speech recognition, etc. [1].

In the last decade, most SE studies have been undertaken

based on data-driven approaches that are often developed using

deep learning. Deep learning can deal with highly complex

acoustic scenarios and offer real-time processing. To shed a

light on the necessity of causal SE, we can invoke many

applications such as real-time speech communication and

hearing aids, where in the latter case, even a very short latency

as low as three to five milliseconds can be noticeable to a

wearer [2].

Some of the most widely used deep learning-based SE meth-

ods have relied on the fully-connected deep neural network

(DNN). Estimating an ideal ratio mask (IRM) by DNN for

SE was one of the very first approaches of this type, which

achieved notable improvement over traditional unsupervised

SE methods [3]. DNN was also used to map noisy speech

log power spectral magnitudes to the clean ones in [4] ,

which led to significant improvement in terms of speech

quality and intelligibility. However, the DNN architecture

involves a large number of model parameters. It also fails to

model numerous speakers and noise types since it processes

input samples independently and does not consider long-term

temporal information of input speech [5].

Recently, LSTM networks have been introduced as a natural

means to model temporal dependencies of speech. Chen et al.

in [6] employed an LSTM network for SE and showed its

advantage in speaker generalization over DNN. More recently,

a time-frequency LSTM was introduced in [7] and [8] to take

advantage of temporal and spatial information in the input

speech spectrogram. Since the LSTM network has a large

number of parameters, gated recurrent unit (GRU) and simple

recurrent unit (SRU) networks were adopted in [9] and [10]

as efficient implementations of LSTM for SE.

Besides, CNN has been also employed for complex spec-

trogram estimation for SE [11]. It was shown in [12] that

the same SE results can be achieved by CNN with much

smaller number of model parameters than DNN and LSTM,

while the memory footprint for CNN is higher than DNN

and LSTM, as will be discussed in Section III-C. Another

limitation of CNN is the involved max pooling operation

which only retains rough information [13]. Moreover, the

receptive field of convolutional layers is limited, which means

that only local correlations of input can be considered. Ouyang

et al. in [14] applied a pooling layer-free network with dilated

convolutional layers to tackle these CNN problems and showed

promising SE results. Combinations of CNN and LSTM were

also studied in [15]–[18] showing convincing SE results, but

these methods are mainly non-causal and highly complex.

In [19] and [20], an attention-driven CNN-BLSTM network

and a time-frequency model were introduced, respectively,

for artificial bandwidth extension, where the advantage of

attention mechanism in SE is emphasized.

In this paper, we propose a low-complexity composite

model for IRM estimation in which carefully designed LSTM

and CNN are integrated to extract a complementary set of

features by taking full advantage of the temporal and spec-

tral dependencies of input speech. LSTM and CNN perform

independently and in parallel to speed up the computation,

thereby addressing fundamental concerns of real-time process-

ing, limited latency and low complexity in SE applications.

While having very low complexity, the proposed hybrid model

outperforms some other DNN-based SE methods from the
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Fig. 1: Proposed composite model integrating grouped LSTM and attention-driven CNNs.
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Fig. 2: Applied spatial SAE attention.

recent literature.

II. PROPOSED SYSTEM DESCRIPTION

The proposed SE system is shown in Fig. 1, where CNN

and LSTM networks operate in parallel to exploit spatial and

temporal information of input speech. An attention mechanism

is embedded in dilated frequency CNN to emphasize the

valuable information of CNN feature maps while suppressing

remaining details. A grouping strategy is adopted in LSTM im-

plementation to reduce its complexity. The features extracted

by both paths are mapped to IRM via another low-complexity

CNN empowered with an attention mechanism.

A. Dilated 1D causal frequency convolution

The input of CNN is taken as the short-time Fourier trans-

form (SFTT) of the input signal. CNN filters capture merely

local information while the speech STFT exhibits non-local

correlations along the frequency axis [21]. To benefit from

such spectral correlations, Fu et al. [11] increased the size of

CNN kernels, but this alternative leads to higher complexity

and lower speed. To tackle this problem, dilated convolution

has been introduced in [22], which exponentially expands

the receptive field while keeping the kernel size small. The

paradigm of Dilated convolution has been already employed

in different contexts including SE [9], [14].

In our system in Fig. 1, we employ stacked dilated convolu-

tion CNNs in the lower path, to exploit the non-local spectral

correlations of speech STFT. Further, 1D causal convolution

along the frequency axis is applied. Skip connection and

residual learning techniques are also adopted to facilitate

training and accelerate convergence.

B. Attention Techniques

The spatial and channel squeeze and excitation (SAE) at-

tention operations, as introduced in [23] and [24], respectively,

recalibrate the feature maps in CNN through emphasizing the

significant features and suppressing the rest. The spatial SAE

squeezes the information of different channels pixel1-wise and

excites spatially, while the channel SAE squeezes features spa-

tially, via a global average pooling, into a channel descriptor

and then excites along the channels. Various combinations of

spatial and channel SAE have been actively studied in the

literature [23].

Fig. 2 shows the spatial SAE employed in the CNNs of

our model. Consider the input feature map U ∈ R
T×F×C

where T , F , and C indicate the total number of time

frames, frequency bins, and CNN channels, respectively.

Slicing U over time-frequency bins gives a tensor U =
[u1,1, u1,2, ..., ut,f , ..., uT,F ], where the dimension of ut,f is

1 × 1 × C. In the squeezing phase, both average and max

pooling operations over channels are applied for each ut,f

to reflect valuable information of the feature map. These

calculated matrices of dimension T × F are fed into a

convolutional layer. Finally, the output of the convolutional

layer is element-wise multiplied with the input feature map

to re-weight its information pixel-wise. It is worth mentioning

that the implementation of this operation does not entail a

considerable number of parameters, unlike channel SAE.

C. Modeling Temporal Dependencies via Grouped LSTM

Speech signal exhibits strong temporal dependencies. LSTM

with an embedded memory cell can appropriately leverage

long-term context to boost SE performance. LSTM facilitates

information flow over time using its internal gates. Considering

xt
∈ R

M×1 and ht−1
∈ R

N×1 as the input and hidden state at

times t and t−1, an LSTM is implemented using the following

set of equations,

it = σ(Wix
t + Uih

t−1 + bi) (1)

f t = σ(Wfx
t + Ufh

t−1 + bf ) (2)

ot = σ(Wox
t + Uoh

t−1 + bo) (3)

ĉt = tanh(Wcx
t + Uch

t−1 + bc) (4)

ct = f t
⊙ ct−1 + it ⊙ ĉt (5)

1An elementary time-frequency cell within the spectrogram
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Fig. 3: A two-layer grouped LSTM network: (a) Grouped

with K=2; (a) Grouped with K=2 and a parameter-free

representation rearrangement.

ht = ot ⊙ tanh(ct) (6)

where (it, f t, and ot) ∈ R
N×1 denote input, forget, and output

gates at time t, respectively. W ′s ∈ R
N×M , U ′s ∈ R

N×N ,

and b′s ∈ R
N×1 indicate weight and bias matrices. ⊙ and

σ denote element-wise multiplication and sigmoid activation

function. Considering the above dimensions, the number of

parameters to implement each gate is N2 +NM +N .

In [25], a grouping strategy was proposed to reduce LSTM

network complexity by splitting the LSTM input and middle

layers into K independent groups. The grouping strategy for

a two-layer LSTM network with K=2 is shown in Fig. 3

(a). Ignoring the bias vector, grouping strategy decreases the

number of parameters by the factor of K as follows,

K

(

(
N

K
)2 + (

N

K
)(
M

K
)

)

=
N2 +NM

K
(7)

However, the inter-group dependencies are lost due to the

independent operation of each group. Hence, a parameter-free

representation rearrangement was adopted, as shown in Fig 3

(b), to give subsequent layers access to the output of other

groups. As such, the complexity of the LSTM network is

reduced while keeping the performance almost at the same

level.

D. Network Architecture

Referring to Fig. 1, the magnitude of noisy speech STFT

is computed and then fed to the CNN. Four 1D causal CNNs

with dilated frequency at the rate of 1, 2, 4, and 8 are stacked

to exponentially enlarge the receptive field of CNN filters. The

number of channels in these layers is 16, 32, 16, and 8, and the

kernel size is (1×7). For residual layers, identity mapping with

kernel size (1×1) is employed. The number of layers of skip

connections is 32 and their kernel size is again (1×1). ReLU

is adopted as the activation function. The skip outputs are then

input to the attention layer which computes average and max

pooling. The two matrices resulting from these operations are

next combined using a convolutional layer with kernel size

(1×7) and a sigmoid activation function. The output of the

CNN path will be the point-wise product of CNN output and

attention weights.

The input of the LSTM network consists of conventional

acoustic features [18], namely, low-dimensional log mel-

filterbank energy features (Log-Mel) concatenated with their

delta and acceleration. The grouped LSTM network is made

up of two layers each comprising 128 units, wherein dropout

at the rate of 0.3 is applied. Empirically, we found that the

best results are achieved if a grouping strategy with K=2 is

embedded just in the second layer only.

In the regression stage, the outputs of CNN and LSTM

paths are concatenated and input to a 1D CNN network. The

kernel size of this three-layer network is (1×3): the number

of channels for the first two layers is 32 and 16, respectively,

with ReLU activation function, and this number is 1 for the

last layer, with a linear activation function A further attention

mechanism is adopted between these two layers to further

improve the SE results. The output of this network is an IRM

mask, which will be multiplied with noisy speech STFT and

combined by the noisy phase to reconstruct the clean speech.

III. EXPERIMENTS

A. Experimental Setup

TIMIT dataset [26] is used in our experiment, from which

6300 utterances spoken by male and female are chosen for

training. These utterances are mixed additively with random

sections of 20 different noises 2 form NOISEX-92 [27] at

SNR levels of -5, 0, 5, and 10 dB. For the testing stage, 60

unseen utterances spoken by male and female are mixed with

two unseen noises, specifically, Coffee Shop (CS) and Busy

City Street (BCS) from [28] at unmatched SNR levels of -6,

0, 6, and 12 dB. The sampling rate is set to 16kHZ and the

STFT coefficients are computed by means of a 320-point DFT

with Hanning window and %50 overlap. Perceptual evaluation

of speech quality (PESQ) and segmental signal-to-noise ratio

(SSNR) are used as performance metrics [29].

B. Comparison with Related Work

We compare the proposed model with three other DNN-

based methods: DNN-cIRM [30], CNN-GRU MCRM [18],

and CNN-RI [14]. DNN-cIRM and CNN-GRU MCRM are

masking-based methods where a three-layer DNN and a com-

bination of CNN and LSTM are respectively used to estimate

a complex IRM. For CNN-RI, a fully convolutional neural

network is employed to estimate the complex spectrogram of

clean speech. All the networks are trained and tested with the

same datasets, as described above, for a fair comparison.

Table I shows the PESQ and SSNR results obtained from

each method along with the number of model parameters

(in million). Top and bottom numbers in each cell of the

table show the results for males and females, respectively.

As shown, DNN-cIRM contains quite a large number of

model parameters, CNN-GRU MCRM has a reduced number

of model parameters, and CNN-RI shows a much lower

model complexity. The results clearly show that the proposed

delicately designed composite model achieves the best PESQ

and SSNR results at all SNR levels with the lowest number

2The 20 noises from the NOISEX-92: airport, babble, buccaneer1, car,
destroyerengine, destroyerops, exhibition, f16, factory, hfchannel, leopard,
m109, machinegun, pink, restaurant, street, subway, train, volvo, and white.
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TABLE I: Evaluation of different methods for unseen utterances mixed with unseen noises at unmatched SNR levels.

Method

PESQ SSNR Number of

Parameters

(Million))

-6 0 6 12 -6 0 6 12

CF BCS CF BCS CF BCS CF BCS CF BCS CF BCS CF BCS CF BCS

Unprocessed
1.25
0.96

1.24
0.93

1.68
1.34

1.74
1.48

2.10
1.87

2.24
2.00

2.56
2.37

2.68
2.51

-10.77
-9.93

-9.69
-8.95

-5.61
-5.59

-5.01
-5.15

0.23
0.19

5.57
5.67

5.57
5.67

6.11
6.21

-

DNN-cIRM
1.51
1.24

1.98
1.68

2.14
1.83

2.48
2.21

2.72
2.40

2.97
2.65

3.21
2.94

3.38
3.12

-1.39
-1.22

1.25
1.56

2.48
2.38

4.05
4.17

6.63
6.31

8.56
7.97

8.56
7.97

9.32
8.64

2.82 M

CNN-GRU MCRM
1.66
1.40

1.99
1.70

2.20
1.98

2.52
2.24

2.73
2.51

2.94
2.69

3.26
2.98

3.42
3.14

-0.77
-0.87

1.28
1.46

2.39
2.50

4.07
4.43

6.77
6.88

8.49
8.08

8.49
8.08

9.55
9.05

0.99 M

CNN-RI
1.54
1.22

1.71
1.45

2.00
1.69

2.18
1.91

2.48
2.18

2.59
2.38

2.91
2.64

2.98
2.77

-5.36
-4.99

-1.10
-0.55

-0.41
-0.02

2.27
2.69

4.96
5.56

7.53
7.94

7.53
7.94

8.00
8.64

0.24 M

Proposed
1.84

1.75

2.37

2.20

2.45

2.36

2.81

2.76

2.94

2.83

3.21

3.14

3.32

3.28

3.50

3.41

-0.26

0.07

3.72

3.84

4.62

5.08

6.46

6.93

8.22

8.51

8.82

9.42

8.82

9.42

9.32

9.88
0.21 M
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Fig. 4: Comparison of employing DNN or CNN for regression.

PESQ and SSNR amounts indicate the average improvement

values over all noises and SNR levels. The number of param-

eters is in million.

of model parameters in comparison with the aforementioned

methods.

C. CNN vs. DNN for Regression

DNN and CNN have different attributes in terms of mod-

eling high and low-frequency signals as demonstrated in [31],

and their respective advantage depends on the application of

interest. Apart from that, Park et al. in [12] showed that

CNN and DNN can yield almost the same SE performance

although CNN requires a much smaller number of model

parameters. While they discussed the memory needed to store

model parameters, they did not consider the required memory

for computations.

In this section, we compare DNN and CNN when used

for the regression part of our model, in terms of PESQ,

SSNR, computation time, memory footprint, and the number

of parameters. The DNN consists of two layers each having

512 nodes with a ReLU activation function, and one affine

last layer comprising 161 nodes. The CNN structure is as

described in Section II-D. A single NVIDIA GeForce RTX

2080 GPU with 8 GB memory and 2.2 GHz AMD Ryzen

Threadripper 2920X 12-Core Processor is used to perform

the experiments. The comparison results are shown in Fig.

4. The first four columns show the average PESQ and SSNR

improvement over all noises and SNR levels. The next column

presents the average processing time for a 1-second audio file.

To measure computational complexity for the whole model, we

use FLOPs (FLoating-point OPerations) per frame as in [32].

The last column shows the number of model parameters in

million (M) and the memory to store them in megabyte (MB).

It is worth mentioning that the computational time and the

number of FLOPs are measured in the testing stage.

As shown in Fig. 4, using DNN for the final regression

yields better results compared to CNN in terms of both PESQ

and SSNR. Moreover, the computational time for the model

with DNN for the regression is a bit less than that with

CNN. However, the number of model parameters using DNN

is roughly 4.4 times that of the same model using CNN for

regression. Besides, the number of FLOPs for the whole model

in the DNN case is almost 1.37 times more than that using

CNN. The high number of FLOPs in the DNN case clearly

stems from the high number of model parameters since the

computations in DNN are simple and straight forward. For

the CNN, nonetheless, the memory requirements originate not

only from the need to store its model parameters, but also

other intermediate activations as well as a workspace for the

computations. Also, the high volume of matrix multiplications

in CNN explains its relatively large computation time [32].

This explains why CNN and DNN take almost the same

computational time and comparable memory while the number

of model parameters using CNN is much less than that of a

DNN. Consequently, the choice of CNN vs. DNN in our model

depends on the application , e.g., whether the computation is

to be carried out online or offline.

IV. CONCLUSION

In this paper, a low-complexity composite model has been

proposed for speech enhancement. The new model benefits

from an LSTM network that appropriately exploits the strong

temporal dependencies of speech and a dilated frequency

convolution 1D CNN that captures non-local spectral depen-

dencies in speech spectrograms. The Skip connection and

residual learning techniques were embedded in the CNN

structure for easier training and faster convergence, while a

grouping strategy was adopted to reduce the complexity of the

LSTM. Furthermore, an attention technique was adopted in the

CNN implementation to emphasize the prominent information.

It was shown that the proposed model outperforms some DNN-

base SE methods while having very low-complexity.
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