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Abstract— We present a method that estimates three-
dimensional statistical maps for EEG source localization. The
maps assess the likelihood that a point in the brain contains a
dipolar source, under the hypothesis of one, two or three activated
sources. This is achieved by examining all combinations of one
to three dipoles on a coarse grid and attributing to each com-
bination a score based on an F statistic. The probability density
function of the statistic under the null hypothesis is estimated
non-parametrically, using bootstrap resampling. A theoretical F
distribution is then fitted to the empirical distribution in order
to allow correction for multiple comparisons.

The maps allow for the systematic exploration of the solution
space for dipolar sources. They permit to test whether the data
support a given solution. They do not rely on the assumption of
uncorrelated source time course. They can be compared to other
statistical parametric maps such as those used in fMRI.

Results are presented for both simulated and real data. The
maps were compared with LORETA and MUSIC results. For the
real data consisting of an average of epileptic spikes, we observed
good agreement between the EEG statistical maps, intracranial
EEG recordings and functional MRI activations.

I. I NTRODUCTION

T HE electroencephalogram (EEG) is a recording of electri-
cal potentials at a set of electrodes placed on the scalp.

Though it is a measurement at the surface of the head, the
EEG can still be used in an attempt to infer the location of the
neural electrical sources within the brain that produce given
EEG potentials, for example epileptic spikes or somatosensory
evoked potentials. This localization problem is commonly
referred to as the inverse problem of electroencephalography;
a similar problem is found for the magnetoencephalogram
(MEG). For a review of the electromagnetic inverse problem,
see [1].

The inverse problem is ill-posed as there is an infinite
number of source configurations that can produce the exact
same potential at the surface of the head. However, if one
assumes that the sources are made of current dipoles, with
a small number of dipoles [2] and a sufficient number of
electrodes [3], [4], then the solution is unique [5]. The dipolar
model [6] is a reasonable approximation for focal sources [7]
(for a review of dipolar methods, see [8]). Unfortunately, even
with the dipolar assumption, different combinations of sources
can produce very similar potential patterns. As a consequence,
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the inverse problem of EEG becomes even more ambiguous
in the presence of background noise that can be higher than
the difference between the potentials of such combinations.

Several groups have investigated the ambiguity of the elec-
tromagnetic inverse problem. For a given number of sources,
the uncertainty in the source location parameters was quanti-
fied by defining confidence intervals. This has been done using
the Cramer-Rao bound [9], [10], [11], simulated data [12] or
implanted sources [13]. Determining the number of sources
is a difficult topic though, and this additional ambiguity has
also been a subject of much interest. For example, classical
goodness of fit and model order selection criteria can help
in selecting which model is better suited to the data [14],
[15]. A widely used approach is based on principal component
analysis (PCA, [16]). Indeed, for uncorrelated source time
courses, the number of sources is given by the number of
singular values significantly greater than zero. These non-zero
singular values define a signal subspace that can be scanned
using one dipole only; peaks in the scan indicate possible
locations of the sources; this is the MUSIC method [17].
Drawbacks of the PCA decomposition are that it can be
difficult to define the dimension of the signal subspace, and
that PCA fails to find the number of sources when the time
courses are fully correlated (even though a refinement of
the MUSIC method has been proposed for handling fully
correlated sources [18]). Another way to explore the brain
volume is to use spatial filtering, or “beamforming” [19]. The
efficiency of beamforming is also sensitive to the level of
correlation of the sources, although it has been shown to be
robust for a medium level of correlation [20].

A sensible way to reduce the ambiguity in the location pa-
rameters is to incorporate constraints originating from anatom-
ical considerations, such as forcing sources to be distributed on
the cortical surface and oriented perpendicular to it [21]. How-
ever, when using distributed sources, the very large number of
sources results in an underdetermined problem. Regularization
methods need to be introduced, such as a that of minimum
energy [22] or of maximal smoothness [23]. Another type
of constraint involves the use of data from other functional
imaging modalities, such as functional magnetic resonance
imaging (fMRI) [24], [25].

As the electromagnetic inverse problem is ambiguous, some
authors have advocated an approach that avoids considering
only a single “best” solution, but rather estimates a probability
distribution of solutions [26], [27]. They used a Bayesian
framework that allows the incorporation ofa priori knowledge
in a formal way. In [27], the posterior distribution is sampled
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with the Markov Chain Monte Carlo (MCMC) technique;
in [28] this approach is implemented within a maximum
likelihood framework. The beamforming technique can be also
be used in order to built statistical parametric maps [29].

In this paper, we investigate the ambiguity in both number
and localization of dipolar sources, by exploring all the com-
binations of one to three dipolar sources on a coarse grid. This
exhaustive search is made possible by limiting the resolution
and the number of sources. We give to each combination of
sources a score based on a statistical measure that reflects how
well it describes the data. This is to be contrasted with the
methods that first establish a best-fit solution and then estimate
a confidence interval on the parameters of the solution [9],
[10], [11]. We then build a three-dimensional map assessing
for each elementary volume (or voxel) the likelihood that it
contains a source by summing the scores of all combinations
containing this voxel1.

The systematic exploration of the solution space is usually
referred to as “dipole scanning”. The advantage of a scan with
multiple sources is to permit the recovery of sources with
perfect correlation, and also to avoid the potential local minima
that exist in minimization-based approaches. The integration
of the results when there is more than one source has not to our
knowledge been reported. We propose a method for integrating
at each point the results over all possible combinations,
whereas the multiple-source scanning of [18] is searching for
an optimum combination. The attribution of a score at each
point of the head resembles the MUSIC scan [17]. However,
we perform statistical measures that allow for the assessment
of the significance of the scores, contrary to the MUSIC
measure.

Our statistical approach is related to that of [27], but differs
in several aspects. First, we use simple statistical tests in
a frequentist framework. Second, it is an easier method to
implement as it does not require MCMC computations. Third,
we introduce in our scoring scheme a model order criterion
that helps to reject additional sources that merely describe
noise. Furthermore, we do not rely solely on a parametric
description of the noise distribution that would make the
statistical tests very dependent on the (difficult) estimation
of the noise covariance matrix. Instead, we use empirical
techniques in order to determine the distributions of our
statistics.

In section II, we introduce the statistical framework and
concepts. We present in detail our method in section III.
In section IV, we introduce the data used for validating the
method. In section V, we present the results of the validation
with both simulation and real data, and of a comparison
with the LORETA [23] and MUSIC [17] methods. The maps
obtained for real data are compared to fMRI activations and
intracranial EEG recordings belonging to the same patient.

1The term “likelihood” is used here in a general sense; this is not to be
confused with the more strict statistical meaning, i.e. the probability of the
observations given the parameters, seen as a function of the parameters.

II. STATISTICAL FRAMEWORK

A. The Linear Model

We assume that the EEG signal that we observe can be
modelled by a set ofs dipolar sources at locationsθi =
(xi, yi, zi), i ∈ {1, ..., s}. Each source is represented by
a basis of three colocalized orthonormal dipoles describing
any possible dipolar activity inside a given region [17], [30].
For each source, we definex(θi) as the (n channels× 3
dipoles) matrix whose columns are the potentials created by
the corresponding three orthonormal dipoles.

The classical linear model for the EEG signal in the
presence of noise is

Y = X(Θ)B + E, (1)

whereY is the spatiotemporal data matrix (n channels× p
time points); in order to enhance the SNR,Y is generally
resulting from the average ofk identical events.X(Θ) =
[x(θ1) ... x(θs)] is the sensor array matrix (n channels×
3s dipoles), Θ = [θ1 ... θs] contains the dipole location
parameters,B contains the dipole waveforms (3s dipoles× p
time points) andE is the error matrix (n channels× p time
points). In the following sections, we will generally drop the
reference toΘ to simplify the notations.

Each channel of EEG data is recorded with respect to a
reference signal; this means that the rank ofY is min{n −
1, p}; this is also reflected in the degrees of freedom for the
statistical tests in II-C.

The error matrixE can be broken down into “pure EEG
noise” Eeeg, i.e. the error arising from background EEG ac-
tivity superimposed on the signal, and “model error”Emodel,
i.e. the part of the signal that has not been explained by the
model [15]:

E = Eeeg + Emodel. (2)

Typically, the EEG errorEeeg is assumed to be multivariate
Gaussian. The model errorEmodel is the term we seek to
minimize by selecting the correct number and location of
sources. The time courseB of the dipoles can be further
projected onto temporal basis functions [31]; this has the
advantage of taking into account known temporal properties
such as smoothness [32] and of reducing the number of
parameters to estimate.

The classical statistical tests for the general linear model (1)
require that the errorE be white and Gaussian [33]. The
Gaussian assumption is reasonable for averaged EEG data
with a high number of eventsk. However, the hypothesis
of whiteness is strongly challenged as there is a high level
of both temporal and spatial correlation in EEG data. An
option is to preprocess the data to render the noise as uncor-
related as possible, using the covariance matrix of the noise
Σ (“prewhitening” step, [34], [35]). Equivalently, one can
incorporateΣ directly into the model and use the generalized
least squares method [36], [37]. Using the information from
Σ is important both during the fitting of the model, to avoid
overfitting the noise, and during the inference step, to be able
to model parametrically the noise properties (typically as a
normal distribution). However, the estimation ofΣ from data
with a high level of spatio-temporal correlation is a difficult
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operation. Indeed, a fullΣ describing all possible covariances
has a dimension ofnp × np and hasnp(np + 1)/2 free
elements. It is possible to reduce considerably the number
of free elements inΣ by assuming that it is the Kronecker
product of ann × n spatial covariance matrixΣS and a
p × p temporal covariance matrixΣT [35]. Still, in order
to estimate reliably the spatial covariance, one needs at least
n(n + 1)/2 independentn × 1 time points. This can be
quite demanding, especially given the constraint of having
a stationary EEG for the estimation procedure. An option is
to perform more “robust” estimation by assuming a further
constrained structure, such as a covariance decaying with
distance [38].

B. Estimation of parameters

We assume as in [35] that the prewhitening process can
be separated into a spatial matrixWS and a temporal matrix
WT . The prewhitened signal is theñY = WSYWT . The
spatial transformation must also be applied to the array matrix:
X̃ = WSX.

Under the assumption that(X̃T X̃) is full rank, an estimate
B̂ of the (temporally prewhitened) source amplitude parame-
ters can then be computed by ordinary least squares [33]:

B̂ = (X̃T X̃)−1X̃T Ỹ. (3)

The matrix of residuals is formed by projecting the
prewhitened data onto the subspace orthogonal to that spanned
by the columns ofX̃:

R = Ỹ − X̃B̂ = (I− X̃(X̃T X̃)−1X̃T )Ỹ. (4)

C. Model Testing

1) Goodness of fit:One may want to assess if the model
accounts properly for the signal, i.e. if residuals are only
noise. Typically, the residualsvec(R) are hypothesized to be
distributed with a multivariate normal distributionN (0, I),
with 0 np× 1 vector of zeros andI np× np identity matrix.

The residuals sum of squares, or “sum of squared errors”,
is the square distance between the model and the data:

SSE = tr(RT R). (5)

Under the hypothesis of normally distributed residuals, (5) has
a χ2 distribution with d.o.f.df(s) = (n− 1− 3s)p.

2) Model Order: Increasing the order of the model, i.e. the
number of sources, is likely to result in a reduction of the sum
of squared errors (5), as the residuals are formed by projecting
the data onto a smaller subspace in (4). It is therefore important
to test whether this reduction is significant, i.e. if the reduction
is larger than that expected if the additional source was only
explaining noise. For a given combination ofs sources, and
a reduced model with(s − 1) sources, the null hypothesis
H

(order)
0 is that the portion of the sum of squares explained

by the additional source has aχ2 distribution. A simple test
of model order uses the following statistic:

F =
df(s)

df(s− 1)− df(s)
SSEs−1 − SSEs

SSEs
, (6)

where SSEs is the sum of squared errors for the fit with
s sources andSSEs−1 is the sum of squared errors for the
reduced model. Under the null hypothesisH

(order)
0 , (6) has

an F distribution with d.o.f.(df(s − 1) − df(s)) = 3p and
df(s) = (n− 1− 3s)p.

III. C ONSTRUCTION OFSTATISTICAL MAPS OF

ACTIVATION

In order to construct a map fors sources, we consider all
the combinations ofs sources on a grid. For each combination,
we compute an F test using spatially prewhitened data, that
assesses if the data support the hypothesis ofs sources versus
(s− 1). We then compute a score at a given point of the grid
by integrating the scores of all the combinations containing
this point that pass a threshold of significance. The thresholds
are computed using bootstrap resampling.

A. Prewhitening

We perform spatial prewhitening using an estimate of the
spatial covariance matrix,

Σ̂S = ZZT , (7)

where Z is a (n channels× L time points) spatiotemporal
matrix containing averaged background EEG. We assume
that the averaged background noise was stationary across
the matrix Z. The sizeL of the background window is a
compromise: it needs to be large in order to perform a correct
estimation of the noise properties, but choosing too large a
window increases the chances of incorporating spikes in the
background or having a non-stationary window [39].

The matrixΣ̂S is broken down based on a Singular Value
Decomposition,

Σ̂S = UΛUT , (8)

with

Λ =

 λ1 (0)
...

(0) λn

 (9)

matrix of singular values andU the matrix of eigenvectors.
The spatial prewhitening filter is then defined as

WS =


1√
λ1

(0) 0
...

...

(0) 1√
λn−1

...

0 . . . . . . 0

UT . (10)

We set the last diagonal element in (10) to zero as the
rank of Z, and thereby that of̂ΣS , is (n-1). Indeed, each
channel of EEG data is always recorded versus the signal of
the same reference electrode. We do not perform any temporal
prewhitening, i.e.WT = Ip.
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B. Testing the Combinations

The statistical maps are constructed on a spatial grid of N
points Pj = (xj , yj , zj), j ∈ {1...N}. In order to obtain a
map fors sources,s ∈ {1, 2, 3}, we consider all combinations
of s grid points with parametersΘs

k, k ∈ {1...Cs
N}, where

Cs
N = (N !)/(s!(N − s)!). For each combination, we create

an sensor array matrixX(Θs
k) (cf. IV-A) and perform a least

square fit with equation (3). For this combination, we compute
the sum of squares errorsSSE(Θs

k) with (5) and the F statistic
F (Θs

k) with (6). We defineΘs
min as the parameters that give

the lowest sum of squared errors across all combinations ofs
sources, i.e. the best fit:

Θs
min = arg min

Θs
k

(SSE(Θs
k)). (11)

For a given combination ofs sources with locationΘs
k, the

F value (6) is defined versus the combination with one less
source that gave the lowest sum of squared errors:SSEs−1 =
SSE(Θs−1

min). For the one-dipole scan, we use the data total
sum of squares asSSEs−1. We are thereby testing that the
combination withs sources is an improvement on the best
solution with(s− 1) sources.

C. Computing the Scores

The score for the combinationΘs
k is defined as:

σk =
{

F (Θs
k) if F (Θs

k) ≥ thrF (s)
0 otherwise.

, k ∈ 1...Cs
N ,

(12)
with thrF (s) the significance threshold at the orders (cf. III-
D).

At each pointPj of the grid, j ∈ {1...N}, we integrate
the scores of all the combinations containing this point and
normalize by the number of combinations:

map(Pj , s) =

∑
{k|Pj∈Θs

k}

σk

Cs−1
N−1

, (13)

which reflects the likelihood that this grid point contains a
source under the hypothesis ofs sources.

D. Computation of Thresholds

In order to compute the thresholds for the statistical tests, we
estimate empirically the distribution of the F statistic (6) under
the null hypothesis (i.e. the additional source is only explaining
noise). To do so, we construct a set of 5000 realizations
E∗

b , b ∈ {1...5000} of realistic averaged EEG noiseEeeg.
Each realizationE∗

b of the noise is obtained by drawing
at random with replacement sections of 20 consecutive points
(100 ms) from the averaged backgroundZ (i.e. one could
obtain in one realization several copies of the same section).
Enough sections are joined together in order to obtain a matrix
E∗

b with the same number of columns as the original signal
of lengthp. This is the “moving block bootstrap” for serially
correlated data, as described in [40]. Our assumptions are that
the averaged background is stationary and sufficiently long
to represent well the variability of the underlying stochastic

process, and that the length of the sections is sufficient to
preserve the temporal structure of the process. This implies
that each realizationE∗

b has the same statistical properties as
the original averaged EEG background.

We fit the model to each realization as in (3):

B̂s,∗
b = [X̃(Θs

min)T X̃(Θs
min)]−1X̃(Θs

min)T Ẽ∗
b , (14)

where Ẽ∗
b = ΣSE∗

b is the prewhitened noise, andΘ =
Θs

min, s ∈ {1, 2, 3} are the parameters corresponding to the
combination of sources that produced the lowest sum of
squared errors when fitted to the data (11). We then compute
the statisticsSSE∗

b (s) using (5) andF ∗
b (s) using (6), with

SSEs−1 = SSE∗
b (s − 1). For s = 1, we use the sum

of squares ofẼ∗
b as SSEs−1. At each s, we compute the

empirical distributions (histograms) ofF ∗
b (s), b ∈ {1...5000}.

In a second step, the estimated thresholds need to be
corrected for multiple comparison. However, the empirical
distributions ofF ∗

b (s) typically have an insufficient sampling
of the tails for this procedure. Therefore we fit to each em-
pirical distribution a theoretical F distribution by varying the
corresponding degrees of freedom; we use a non-linear min-
imization method (simplex algorithm). We then compute the
thresholdsthrF (s) corresponding to thep = 0.05 percentile
corrected with the Bonferroni method, i.e.p = 0.05/Cs

N .

IV. EVALUATION OF THE METHOD

We analyzed three data sets in order to evaluate the capaci-
ties of our method for localizing sources and assessing dipolar
models. The first set was an idealized configuration consisting
of two simulated dipoles located on the grid used for scanning,
with potentials corrupted by Gaussian noise correlated in space
but not in time. The second data set was a more realistic
situation, where we simulated extended patches of cortex,
with real EEG noise added. The third set was a real average
of epileptic spikes, obtained on a patient for whom we had
functional MRI and intracerebral EEG results.

For each data set, we computed on a 10 mm grid the statis-
tical maps for one to three dipoles, as well as a MUSIC scan
and a LORETA current density reconstruction. The MUSIC
and LORETA methods are the versions implemented in the
Curry software (Neuroscan Labs). For MUSIC, we included
in the signal subspace the eigenvectors corresponding to the
singular values above the level of the noise.

A. Model Computations

We computed all possible components of the array matrix
X with the Curry 4.5 software (Neuroscan, El Paso, TX).
The computations used a boundary element method (BEM)
realistic head model based on the subject’s own MRI scan,
with BEM surfaces corresponding to the brain (7 mm mesh),
skull (10 mm mesh) and skin (12 mm mesh) [41]. Conduc-
tivities were set to 0.33 S· m−1, 0.0083 S· m−1 and 0.33
S · m−1 respectively (ratio of skull to brain of 1/40). We
created a uniform square grid inside the brain volume with
10 mm spacing; points corresponding to deep brain structures
were not included. To enhance computation speed for the scan
for s = 3 sources, a low-resolution 15 mm spacing grid was
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also created. For each point of the grids, we computed the
potentials generated by three unit orthogonal dipoles. These
potentials were also referenced to the average.

B. Idealized Simulation

We computed the potentials of two simulated radial dipoles
located symmetrically in the left and right central regions.
We used the head model built for the patient data (cf IV-
A). The time course of both dipoles was a half-period of a
sine wave, lasting 40 samples; the two dipoles were perfectly
synchronous. The background noise (1000 samples) was gen-
erated by assigning to each unit dipole on the 10 mm grid a
pseudo-random amplitude following a Gaussian distribution,
similarly to [42]. This ensured spatial correlation and temporal
whiteness of the noise. The potentials created by the sources
were scaled in order to obtain a signal to noise ratio of 10 (ratio
of total sum of squares across time and channels). Figure 1
shows the simulated data.

C. Realistic Simulation

We created ann× p (n = 43, p = 34) spatiotemporal data
matrix by adding the potentials generated by two simulated
sources to real EEG background noise sampled atFs = 200
Hz. The first source was placed in the lateral part of the tem-
poral lobe. The second source was in the frontal region. The
time course of the first source was obtained by adding three
consecutive gamma functions peaking at 40 ms, 110 ms and
250 ms respectively. The parameters of the gamma functions
were obtained by fitting the real average spike presented in
the next section. The time course of the frontal source was
obtained by stretching that of the first source in order to have
the first peak delayed by 15 ms, which is a reasonable value
for neuronal propagation (cf. Fig. 1(b)).

We simulated each realistic source as a patch of cortex. We
used a 2 mm mesh of the cortical surface, obtained from the
MRI of the patient presented in next section, and placed a
dipole at each vertex in the direction normal to the mesh. A
patch was defined as a set of dipoles within a sphere of radius
1.3 cm (i.e. of sectionπ · 1.32 ' 5.3 cm2). The background
noise was obtained by adding 20 sections of real EEG with no
spike obtained from the patient described in next section. The
sum of the source potentials was scaled so as to have a signal
to noise ratio of 100 (ratio of total sum of squares across time
and channels). Figure 1(c) shows a butterfly plot of the data.

D. Patient Data

The EEG data consisted of a 43-channel spatio-temporal
matrix resulting from the average ofk = 23 epileptic spikes
sampled at a frequencyFs = 200 Hz, from a patient with focal
epilepsy. The spikes were chosen to be as similar as possible,
in terms of spatial distribution and temporal waveform. The
spikes were aligned by cross-correlation before averaging. The
EEG was filtered with a band-pass filter set from 1.6 Hz to
35 Hz. The averaging and filtering was performed with the
BESA software (Megis, Munich, Germany). The data was
“referenced to the average”, i.e. the average of all channels
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Fig. 1. Simulated data: temporal characteristics. The sampling frequency is
200 Hz. (a) EEG data for the idealized simulation (two central radial dipoles
on the grid); only the 10-20 channels and 200 samples of background are
shown. The SNR is 10 (ratio of sum of squares across all channels and time
points). (b) Source time courses for the realistic simulation (one temporal
patch and one frontal patch). Solid line: temporal source, dashed line: frontal
source. The first peak of the frontal source is delayed by 3 samples (15
ms). The time courses were scaled to have the same energy. (c) Data for the
realistic simulation; only the 10-20 channels and 200 samples of background
are shown. The SNR is 50.
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was subtracted from the data at each time point. We defined a
signal window ofp = 34 samples (170 ms), i.e. the portion of
interest of the averaged EEG spike, and a background noise
window of L = 1000 samples (5 s), i.e. an average ofk = 23
EEG sections preceding each spike and not containing spikes.
The first point of the background window was set to 2000 sam-
ples (10 s) before the spike, as the background immediately
preceding the spike was contaminated with spikes. The signal
window was chosen to encompass the spike itself and the slow-
wave that follows (Fig. 2). The signal to noise ratio was 296.5
(ratio of total sum of squares across time and channels).

For this patient, we also had intracranial EEG record-
ings, anatomical and functional MRI data. The intracranial
recordings were performed during presurgical evaluation. The
fMRI protocol consisted of recording 19 EEG channels (10/20
system) inside the MR scanner (details in [43]). The timing
of the EEG spikes was used for the statistical analysis of
the fMRI images. We then recorded the EEG outside the
scanner, adding 24 electrodes (10/10 system) for a total of
43 electrodes. It is the recording outside the scanner that we
used for computing the data matrixY. As the 10/20 electrodes
were visible on the anatomical scan recorded during the fMRI
protocol, we could mark them onto the realistic head model.
The remaining 10/10 electrodes were placed manually on a
3D rendering of the head surface.

E. Computation Time

The computation time for each scan is a function ofCs
N .

In order to reduce the computation time for the three-sources
scan, we used a multi-resolution approach to restrict the search
to a subset of the grid. We first computed the tests on a 15
mm grid, and retained the points in the 10 mm grid whose
nearest neighbour in the 15 mm grid had a non-zero value.

The total computing time for the scans on the 15 mm grid
(311 points) was 1 h 04 min. For the idealized simulation
(cf. IV-B), the number of selected points in the 10 mm grid
was 251 out of 836 (30 %). The total computing time for the
10 mm scans, with the three-sources scan on the restricted
grid, was 1 h 37 min. For the realistic simulation (cf. IV-C),
68 points (8.1 %) were preselected. The computation time for
the scans on the 10 mm grid was 4 min 59 s. For the patient
data, the number of selected points was 82 out of 836 (9.8 %).
The total computing time for the 10 mm scans was 4 min 37 s.

We used a Pentium M laptop with a processor speed of
1.4 GHz and 512 Mb of RAM. The algorithm was imple-
mented with the Matlab software (Mathworks, Natick, MA).

V. RESULTS

A. Empirical Distributions of F

Fig. 3 displays the empirical distributions ofF ∗
b (s) (6) for

one to three sources, for both simulated and patient data,
along with the theoretical F distributions (corresponding to
the assumption of white gaussian residuals) and the fitted F
distributions (cf. section III-D).

For the idealized simulation, the empirical distributions are
very close to the theoretical distribution (fig. V-A), showing
that the spatial prewhitening was efficient in removing the
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Fig. 2. Two sections of 43-channel EEG, created by averaging 23 epileptic
spikes (patient data). Left panel: a section of averaged background. Right
panel: the average spike, with maximum amplitude in the right temporal
region (channels T8, T10, FT10); the dotted lines mark the section selected
for computing the maps. Time is in samples (sampling frequency: 200 Hz).
The SNR is 296.5. Note that the amplitude scale is different between panels.
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(a) Idealized simulation.
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(b) Realistic simulation.
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Fig. 3. Empirical distributions of the F statistics for one to three sources. On each graph, the theoretical distributions for white gaussian noise is shown
in dashed line. The fitted F distribution are in dotted lines. For the realistic simulation and the patient data, the empirical distribution are broader than the
theoretical distributions, due to the remaining correlations in the EEG data.

spatial correlations. For both realistic simulation and the
patient data (fig. 3(b) and 3(c)), the empirical distributions
are broader than the theoretical F distribution. This is likely to
reflect the fact that there is still some correlation left in the data
- thereby decreasing the effective degrees of freedom. Indeed,
we did not perform temporal prewhitening in order to preserve
the signal [35] and the spatial covariance was estimated on a
limited number of time points in order to ensure stationarity
and avoid contamination by spikes.

The fitted distributions generally represent well the empiri-

cal distributions. However, for the real background EEG, there
is a tendency for the empirical distribution to have a thicker
tail than the fitted distribution, which is more prominent for
3 sources (fig. 3(b) and 3(c)). This may suggest that in our
examples the real EEG background is not perfectly Gaussian.

B. Maps for Idealized Simulation

The maps resulting from processing the idealized simulated
data (cf. IV-B) are shown in Fig. 4. The grid points with non-
zero values permit to assess the extent of the regions where
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Fig. 4. Statistical mapsMap(Pj , s) for one, two and three sources for the idealized simulation. The F threshold and the F score corresponding to the
combination with the best fit are displayed on the left of each map. In the fourth row, the (manually) preselected grid points are shown. In the last row,
the actual locations of the two simulated dipoles are shown. Abscissae: elevation in mm (z axis). Voxels with a value of zero are not shown; those in black
correspond to very low non-zero values. The locations of the dipoles are detected as local maxima in the maps for two sources (z = 187). No combination
of three dipoles was significant. The MUSIC 1-dipole scan was unable to separate the sources. LORETA correctly identified two peaks, but atz = 177.

the hypothesis of a dipolar source is supported by the data.

The one-source map, which is simply the significant F
scores, displays the grid points where one dipole explains a
significant portion of the data. There is a large number of
points with a high score in both left and right regions, with a
right predominance that likely reflects the fact that this source
contributed more to the signal (as the two sources are not
perfectly symmetrical).

For the two-source map, which represents the integration of
the scores of all combinations of two dipoles, the maps present
two local peaks at the correct dipole locations (z = 187). The
maps are more focused around the true dipole locations, which
could be because the criterion (significance of two dipoles
versus one) is stricter than for the one-source map (significance
of one dipole versus none). Another effect is that the two-
source map is created by averaging over a large number of
combinations, which favours points that are present in a large
number of combinations.

The maximum F score for two sources is 153, which shows
that the data strongly supports the hypothesis of two dipolar
sources versus one dipolar source. In contrast, the map for
three sources is blank, which shows that the method correctly
rejected the hypothesis of three dipolar sources.

The MUSIC scan (signal subspace of dimension one) finds
one peak in the middle of the simulated dipoles, as expected
because of the perfect correlation of the sources. The LORETA
method correctly identifies two peaks, but at a lower z-value
(z = 177). This lower value of z could be a consequence of
the smoothness constraint or of the partial prewhitening (only
the diagonal of the covariance matrix was used).

We present in figure 5 the time courses reconstructed by
considering a dipolar source at each local maximum of the
two-source map. The time courses correspond very well to
the simulated waveform.
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Fig. 5. Reconstructed time course for the idealized simulation, for sources
placed at the local maxima of the map for two sources. For each source, a basis
of three orthogonal dipoles is used. The data displayed is reconstructed using
a singular value decomposition of the source time course (this is equivalent to
having one dipole of the basis oriented along the direction of higher variance).
The time courses of the main component correspond very well to the simulated
waveforms for both sources (half sine wave of period 40 samples).

C. Maps for Realistic Simulation

The maps resulting from processing the realistic simulated
data (cf. IV-C) are shown in Fig. 6. In the maps for one and
two sources, a large number of points have a non-zero value,
including the areas corresponding to the sources but also the
region lying between the two simulated sources. The points
that stand out are all in the left temporal region. This reflects
the fact that the temporal source contributes much more to
the data than the frontal source (the SNRs for the temporal
and frontal sources considered separately are 46.7 and 3.3
respectively).

The map for three sources shows that there are significant
combinations of three dipolar sources that can explain the
data, although only two sources have been simulated. This
can be explained by the fact that the simulated sources are not
single dipoles lying perfectly on the grid as in the idealized
simulation, and therefore require more than two dipoles to
explain fully the signal. Nevertheless, the points with higher
values are in the correct regions. The match is very good
for the temporal source, as the global maximum lies around
the location of the center of gravity of the patch. The points

are displaced to a lowerz-value for the frontal source. The
maximum F score is much higher for the two-sources maps
than for the three-sources map (48.3 versus 5.8), showing that
the impact of going from one source to two sources is higher
that when going from two sources to three sources.

Both MUSIC (signal subspace of dimension two) and
LORETA identify two regions of activation. For both, the
global maxima corresponding to the temporal source (z =
127) are displaced to a lowerz value with respect to the centre
of gravity of the patch. Only MUSIC was able to detect the
frontal source at the exact z location (z = 187), whereas both
LORETA and our method found this frontal source displaced
to a lowerz-value (z = 167 andz = 177 resp.). The MUSIC
scan is the method that gives the best contrast for the frontal
source.

We present in figure 7 the time courses reconstructed by
considering a dipolar source at each local maximum of the
two-sources map. For the temporal source, the time course
corresponds very well to the simulated waveform. The wave-
form of the frontal source is more difficult to retrieve because
of the lower SNR of this source. However, it is still possible
to see that the source is activated with a delay with respect to
the temporal source.

D. Maps for patient data

Fig. 8 presents the maps for the patient data, as well as the
intracranial EEG (SEEG) electrodes and the functional MRI
t-stat map. The threshold oft = 3 for the fMRI map implies
that five contiguous points need to be above the threshold in
order to have a cluster significant atp = 0.05 (corrected, [44]).

In the map for one source, the right temporal region (z =
114) presents the highest values. The activated region extends
all the way up to the right superior parietal region. In the
maps for two and three sources, the global maximum is still
temporal atz = 124 and additional local maxima appears in
the inferior frontal region (z = 144 andz = 154 for the two-
and three-sources respectively) and in the right parietal region
(z = 164 for both).

The MUSIC scan (subspace dimension of three) finds
local maxima only in the temporal region; however the three
regions found with the statistical maps present high values.
The LORETA method finds local maxima in the temporal
(z = 124) and parietal regions (z = 164), but none in the
lower frontal region (even though there are still relatively high
values in this region).

There is no SEEG electrode at the level of the temporal
global maximum atz = 124, but it is located just below
activated SEEG electrodes atz = 134. The inferior frontal
local maximum in the three-sources map (z = 154) is at the
level of an activated SEEG electrodes; this local maximum
corresponds to one dipole of the best fitting combination.

The activated SEEG electrodes atz = 144 also correspond
to a high value in the three-source map. The SEEG electrode
closer to the parietal local maximum is active (z = 164). This
local maximum does not correspond to any dipole of the best
fitting combination. Moreover, it is located at the level of the
fMRI cluster (z = 154− 164).
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Fig. 6. Statistical mapsMap(Pj , s) for one, two and three sources for the realistic simulation. The F threshold and the F score corresponding to the
combination with the best fit are displayed on the left of each map. In the last row, the actual locations of the two simulated patches are shown. Abscissae:
elevation in mm (z axis. Voxels with a value of zero are not shown; those in black correspond to very low non-zero values. The locations of the patches
correspond to grid points with high values in the maps three sources (z = 137 andz = 177− 187). As the number of sources increase, the maps become
more focused towards the center of gravity of the patches. Both MUSIC (signal subspace of dimension two) and LORETA identify two regions of activation.
For both, the global maxima corresponding to the temporal source (z = 127) are displaced to a lowerz value with respect to the centre of gravity of the
patch.

Given the fact that the spatial resolutions of the different
techniques (EEG dipole localization, fMRI at1.5 T and SEEG)
are of the order of1 cm [13], [45], our cross-modality results
are compatible with one another. The peak in the EEG map
that is closest to the fMRI activation is that with the lowest
score, and the other peaks do not correspond to any fMRI
activation. In particular, this is the case for the main EEG
peak in the inferior temporal region, possibily because of fMRI
signal loss in this region due to a magnetic susceptibility effect.
This suggests that one should be cautious when considering
the possibility of a one-to-one correspondence between EEG
and fMRI results, as pointed out in [46].

VI. CONCLUSION

We have presented a method for building statistical maps for
EEG source localization. These maps assess for each point in
the brain the likelihood that it contains a source by giving it a

score based on a statistical test. They allow for the exploration
of the solution space in a systematic way. This permits to
assess the range of plausible solutions, but can also be useful in
order to avoid the local minima that plague the minimization-
based approaches. Contrary to a PCA decomposition, there is
no need to assume that source time courses are uncorrelated.
The maps also permit a comparison of the results obtained
under the hypothesis of one, two or three dipolar sources. They
are three-dimensional, contrary to a classical dipole solution
and can be compared to other statistical parametric maps, such
as those used in functional MRI. Indeed, a region that is not
a local maximum in the EEG and the fMRI maps but still
leads to a significant score in both maps would increase the
confidence that this region is active.

We use a test of model order at each level that assesses if
the data support the addition of another source. The use of
a threshold permits to restrict the result to the combinations
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Fig. 8. Statistical mapsMap(Pj , s) for one, two and three sources for the patient data, compared with MUSIC and LORETA results, depth EEG
recordings(SEEG, electrodes with spiking activity in yellow, other electrodes in orange) and functional MRI (t-stat map). The F value corresponding to the
combination with the best fit and the corresponding threshold are displayed on the left of each map. In the fourth row, the grid points that have been preselected
are shown. Abscissae: elevation in mm (z axis). For the EEG maps, the value at each point is the mean score across all combinations containing the point. For
the fMRI map, the values are t-statistics. In the three-source map, the global maximum atz = 124 in the anterior temporal region is located below activated
intracerebral electrodes atz = 134. The local maximum atz = 154 in the inferior frontal region corresponds well to an activated subdural electrode at
z = 154. The local maximum in the parietal region atz = 164 is just above the fMRI main cluster of activation (z = 154). The MUSIC scan finds local
maxima only in the temporal region. The LORETA method finds local maxima in the temporal and parietal region, but none in the lower frontal region.

where all the sources contribute to the model. Summing up the
scores of the combinations at each point enables to visualize
the results in a condensed manner. It also enhances the points
contained in several plausible combinations, which we assume
are more likely to contain a true source. Indeed, less weight
should be given to spurious detections that appear only in a
few combinations, whereas true sources should be part of a
large number of combinations.

The information on the number of sources that is supported
by the data is very important in EEG dipole modelling. Our
results for the realistic simulation point to a limitation of a
dipolar scan in that sense. Indeed, as real sources are not lying

on a grid and are not point sources, but rather extended patches
of cortex, the F test of model order results in a number of
dipoles larger than the number of activated patches. We expect
this limitation to have also a strong impact on the sum of
squares (5), as a large number of sources will be needed to
bring the residuals below the level of the noise.

The localization results we obtained in both simulated and
real data are very encouraging. In the simulated data, the maps
presented peaks consistent with the locations of the sources.
In the real data, the peaks in the scan corresponded well with
both depth EEG and fMRI results. Quantitative evaluation on
real data remains difficult, though, due to the limited spatial
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Fig. 7. Reconstructed time course for the realistic simulation, for sources
placed at the local maxima of the map for two sources. For each source, a basis
of three orthogonal dipoles is used. The data displayed is reconstructed using
a singular value decomposition of the source time course (this is equivalent to
having one dipole of the basis oriented along the direction of higher variance).
For the temporal source (top), which has the higher SNR, the waveform is
well reconstructed in the main component. For the frontal source (bottom),
the waveform is more difficult to visualize because of the lower SNR of this
source. The first peak of the main component permits nevertheless to see that
this source is activated with a delay.

sampling of depth EEG. Further simulations will be required
with different combinations of sources and noise levels, as
well as more tests on patient data.

We have compared our localization results to those obtained
with two well-known methods, namely a MUSIC scan and
LORETA, which also produce three-dimensional maps of
activity. On the data presented, our method compares well with
MUSIC and LORETA in terms of detection capacities. Only
our method was able to detect the fully correlated sources at
the correct location. The variation of MUSIC for correlated
sources proposed in [18] would probably have been able
to detect these sources too; however we also display with
our method the three-dimensional extent of plausible dipolar
solutions. Our statistical approach could be compared to the
noise-normalized implementations of the distributed sources
methods [47], [48], which could be more suited for extended
sources.

Generally speaking, all these methods should not be seen
as antagonist, but as asking different questions with respect

to the data. MUSIC and LORETA aim at finding the best
solution in a given sense, the sources most correlated to the
signal subspace for MUSIC and the spatially smoothest current
density for LORETA. In our method, we aim at assessing
whether a given combination of sources is supported by the
data by using a statistical threshold. In addition, we combine
all significant solutions to create a map of the likelihood of
having a dipolar source at a given point.

We have used an empirical method for the computation of
thresholds. This permits to take into account the fact that noise
is strongly correlated, both spatially and temporally, and to
adapt the tests accordingly. The other option would have been
to rely solely on prewhitening of the data, which has two
drawbacks: the robust estimation of the covariance matrix with
highly correlated data is difficult, and temporal prewhitening
can reduce the signal [35].

The models fitted in order to estimate the empirical dis-
tributions were based on the best solutions at levels and
(s− 1), mainly for computational reasons. The thresholds we
obtain are expected to be conservative, as we use the lowest
SSE at levels, i.e. that giving the highestF value. Also, the
information on the significance of the best combination at level
s with respect to the best at level(s − 1) is valuable in the
context of model-order selection. A refinement of the method
could be to estimate the distributions by including different
sources combinations in the bootstrap method.

When estimating the distributions underH0 using bootstrap
resampling, we chose to fit realizations of noise only (cf.
(14)) and not to include signal. An option would have been to
include in the bootstrap realizations the potentials generated
by the best(s − 1) sources. We do not expect this to have a
high impact though. Indeed, by fitting the best combinations of
(s−1) ands sources, most of the signal in the data generated
by (s − 1) sources should be removed, and any remaining
signal should be at the level of the noise.

We have corrected our statistics for the multiple comparison
problem. We have used a simple Bonferroni correction, which
is likely to be conservative because of the dependence between
the tests on different combinations. An empirical approach
that would control the false positive rate by performing a
large amount of scans on background noise (as in [49]) would
be very computationally demanding, especially for the three-
source scan. An alternative could be to define “resolution
elements”, i.e. sets of grid points for which the tests are highly
correlated, as was done in fMRI [50]. However, we have not
found in our simulated data that the Bonferroni correction
was particularly conservative. This is possibly because the
conservatism of the Bonferroni threshold is compensated by
the fact that sources are not ideal dipoles, which leads to
elevated F tests.

We have used a multiresolution approach, similar to [51].
This allowed us to obtain maps for three sources with a
resolution of 10 mm, a reasonable performance in the context
of spike localization for presurgical evaluation. Nevertheless,
further restrictions on the scanned volume could allow for a
finer resolution or a higher number of sources if this is deemed
necessary.
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