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Abstract—This paper focuses on a regression-based deep
neural network (DNN) approach for single-channel speech
enhancement. While DNN can lead to improved speech quality
compared to classical approaches, it is afflicted by high
computational complexity in the training stage. The main
contribution of this work is to reduce the DNN complexity
by introducing a spectral feature mapping from noisy mel
frequency cepstral coefficients (MFCC) to enhanced short-
time Fourier transform (STFT) spectrum. This approach
requires much fewer input features and consequently lead to
reduced DNN complexity. Exploiting the frequency domain
speech features obtained from this mapping also avoids the
information loss in reconstructing the speech signal back
to time domain from its MFCC. Compared to the STFT-
based DNN approach, the complexity of our approach for
the training phase is reduced by a factor of 4.75. Moreover,
experimental results of perceptual evaluation of speech quality
(PESQ) and source-to-distortion ratio (SDR) show that the
proposed approach outperforms the benchmark algorithms
and this for various noise types, and different SNR levels.

Index Terms—Speech enhancement, deep learning, neural
networks, low-complexity, MFCC

I. INTRODUCTION

The purpose of speech enhancement is to improve the
perceived quality or intelligibility of speech signals that have
been degraded due to different types of acoustic background
noise and interference. Speech enhancement is used in
various applications such as hearing aids, cellular phones,
multiparty conferencing, robust speech/speaker recognition,
security monitoring and intelligence.

Several single channel speech enhancement techniques
have been proposed during the past decades, including
spectral subtraction [1], [2], Wiener filtering [3], [4],
minimum mean square error short-time spectral amplitude
estimation (MMSE-STSA) [5], [6], Kalman filtering [7],
[8], subspace methods [9], [10]. These techniques rely on
a simplified signal model where the background noise is
assumed to be additive with statistical characteristics that
change slowly over time [11]. While such modeling leads
to tractable signal processing operations, the enhancement
performance of these traditional methods suffers from
limited noise reduction, musical noise, and non-linear
distortion.

Recently, there has been much interest towards the

application of machine learning techniques to the speech
enhancement problem, including non-negative matrix
factorization (NMF) [12], [13] and deep neural network
(DNN) [14], [15]. Early work on using shallow neural
networks (SNN) as non-linear filters in speech enhancement
has been presented in [16]. Yet, the performance of
the SNN model with limited network size and small
training set is not satisfactory. With the advancement of
machine learning algorithms and improvement in digital
hardware performance, the DNN structure has been drawing
considerable attention lately within the research community,
as it can achieve significantly better performance compared
to SNN, at the cost of increased computational complexity.
DNN with multiple hidden layers are now preferred for
many applications as they can more efficiently learn
statistical information [14].

In recent works on speech enhancement, DNN-based
models were presented that employ multi-condition training
procedures to initialize the network parameters, such as
restricted Boltzmann machine (RBM) [17] and deep
denoising autoencoder (DAE) [18]. However, the use of
these pre-training approaches is computationally expensive
and does not seem to notably affect the final enhancement
performance of the DNN with ReLU activation function,
given sufficiently large and varied training data sets
[19]. In [15], Liu et al. presented a simpler speech
enhancement approach using DNN with no pre-training,
which can achieve better performance when compared
to NMF techniques with comparable complexity. In [20],
a DNN-based speech separation technique was proposed
using time-frequency masking, as obtained from a second
DNN. The singular value decomposition (SVD) reduction
techniques with DNN training for noisy reverberant speech
recognition was investigated in [21]. The NMF-based target
speech enhancement using DNN was proposed in [22]. In
[23], a signal pre-processing front-end based on DNN was
presented to enhance the speech signal for robust speech
recognition; however, the learning-based noise model was
not considered. In addition, the deep recurrent neural
network (DRNN) [24] was introduced to exploit temporal
information in the source separation problem. Although
DRNN is capable of modeling sequential data for speech
processing tasks, its performance is weak when trained on
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limited noise types [25]. Subsequently, the long short-term
memory (LSTM) [26], [27] model was used to tackle the
gradient vanishing and exploding problem with DRNN and
to learn long-term dependencies. While the use of LSTM
with DRNN leads to improved performance, it requires
increased complexity in implementation.

This paper aims to overcome these limitations by
introducing a low-complexity DNN for nonlinear
regression-based feed-forward DNN model presented
in [15]. While the latter framework can lead to improved
speech quality compared to classical approaches, it is
afflicted by high computational complexity in the training
stage. The main contribution of this work is to reduce
the DNN complexity by introducing a spectral feature
mapping from noisy mel frequency cepstral coefficients
(MFCC) to enhanced STFT spectrum. Compared to the
STFT-based DNN and NMF approaches, our model
reduces the processing complexity for the training phase
by a factor of 4.75. Results of the PESQ and SDR
show that the proposed method outperforms the benchmark
algorithms for various noise types, and different SNR levels.

II. NEURAL NETWORKS FOR SPEECH DENOISING

In this section, we review the basic features of a STFT-
based DNN structure for speech enhancement and associ-
ated training procedure. In single-channel speech enhance-
ment, the noisy speech spectrum, obtained via STFT, can
be expressed as,

Y (ν, k) = X(ν, k) +D(ν, k) (1)

where Y (ν, k), X(ν, k) and D(ν, k) refer to the STFT
coefficients of the noisy speech, clean speech and noise
at the (ν, k)-th time-frequency bin, respectively. Here, ν ∈
{1, 2, . . . , N} and k ∈ {0, 1, . . . ,K − 1}, where N is the
total number of frames and K is the STFT dimension.

A. DNN Structure

The architecture adopted for our model is based on a
feed-forward DNN consisting of multiple non-linear hid-
den layers. This architecture, shown in Fig. 1, allows to
represent a highly non-linear regression function, which
maps noisy speech features at the input into clean speech
features at the output. Each hidden layer, labeled with index
l ∈ {1, 2, . . . , L−1}, where L is the total number of layers,
consists of Il neurons. The output values of the l-th layer
are represented by vector h(l) ∈ RIl and are expressed as,

h(l) = f (W(l) h(l−1) + b(l) ) (2)

where W(l) ∈ RIl×Il−1 is a linear transformation matrix
with (i, j)-th entry w

(l)
ij , b(l) ∈ RIl is a bias vector with

i-th entry b
(l)
i , and f(.) represents a non-linear activation

function which operates element-wise. Depending on the
application, the activation function can be selected ac-
cordingly, such as a sigmoid or piecewise linear function

Fig. 1. Feed forward DNN

[28]. However, the rectified linear unit function [19], turns
out to be more effective in our prediction problem. In
the DNN architecture of Fig. 1, the input (bottom) layer
consists of the noisy spectrum magnitudes at the ν-th frame.
Specifically h(0) = YYYν ≡ [Yν,0,Yν,1, . . . ,Yν,I0−1]T where
Yν,k = |Y (ν, k)|, I0 = K ′ and K ′ = K/2 + 1. The output
(top) layer in Fig. 1, represented by vector h(L) ∈ RIL , is
obtained through a linear regression as,

h(L) = W(L)h(L−1) + b(L) (3)

where W(L) ∈ RIL×IL−1 and b(L) ∈ RIL . For the output
layer, we adopt a special configuration where IL = 2K ′ and
h(L) = [X̂XX ν , D̂DDν ] consists of two K ′-dimensional prediction
vectors. In this notation, X̂XX ν = [X̂ν,0, X̂ν,1, . . . , X̂ν,K′−1]T
and D̂DDν = [D̂ν,0, D̂ν,1, . . . , D̂ν,K′−1]T . The components
X̂ν,k and D̂ν,k provide preliminary estimates of the clean
speech and noise spectrum magnitude, that is X (ν, k) =
|X(ν, k)| and D(ν, k) = |D(ν, k)|, respectively.

The predicted spectrum of the clean speech at the ν-th
frame is finally obtained from the DNN output by applying
the Wiener filter [29] as given by,

X̂(ν, k) =
PX (ν, k)

PX (ν, k) + PD(ν, k)
Y (ν, k) (4)

In this expression, the quantities PX (ν, k) and PD(ν, k) rep-
resent the smoothed clean speech and noise power spectral
densities (PSDs) for the k-th frequency bin and ν-th frame.
They are computed recursively as,

PX (ν, k) = τxPX (ν − 1, k) + (1− τx)X̂ (ν, k)2 (5)

PD(ν, k) = τdPD(ν − 1, k) + (1− τd)D̂(ν, k)2 (6)

where τx and τd denote the temporal smoothing factors for
the clean speech and noise, respectively.

B. Training Procedure

In the training stage, we estimate the weight matrices
W(l) and bias vectors b(l) for each layer, i.e. for all l ∈
{1, 2, . . . , L} by employing training data, represented by
the triplet {YYY,XXX ,DDD}. The latter consists of the input noisy
speech matrix YYY = [YYY1, . . . ,YYYN ], clean speech target XXX =
[XXX 1, . . . ,XXXN ], and clean noise target DDD = [DDD1, . . . ,DDDN ].
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The DNN parameters are estimated by minimizing a
suitable cost function. Among the different cost functions
available for this task, such as the mean-squared error
(MSE), cross-entropy, Kullback-Leibler and Itakura-Staito
divergence, the minimum MSE (MMSE) turns out to per-
form better in our work. The MSE function of the DNN
output is calculated as,

E =
1

N

N∑
n=1

‖[X̂XXn, D̂DDn]− [XXXn,DDDn]‖22 +λ
L∑
l=1

‖W(l)‖22 (7)

where [X̂XXn, D̂DDn] and [XXXn,DDDn] denote the estimated and
target spectral feature vectors of the clean speech and noise
pair, respectively. In order to avoid overfitting, Ridge regu-
larization is considered through the term λ

∑L
l=1 ‖W

(l)‖22,
where λ > 0 is the regularization parameter.

We can use the error backpropagation technique to esti-
mate the parameters that minimize the cost function in (7),
such as the common stochastic gradient descent algorithm,
conjugate gradient and Levenberg-Marquardt algorithms
[30]. In addition, there is an interest towards using an
additional greedy layer-wise pre-training stage via the RBM
[17] or autoencoder techniques [18].

However, these approaches are computationally expensive
and do not seem to critically affect the final enhancement
performance of the DNN with ReLU activation function,
given sufficiently large and varied data sets. In this paper
therefore, we choose an improved version of the resilient
back-propagation (Rprop) [31] algorithm, called iRprop−

and presented in [32]. It is a first-order iterative learning
algorithm, which has been shown to provide a rapid and
reliable convergence compared to the conjugate gradient
algorithm with much less computations.

III. PROPOSED FRAMEWORK

In this section, we first introduce the proposed DNN
framework for speech enhancement in general terms. Then
speech feature extraction based upon MFCC is briefly
reviewed. The spectral feature mapping introduced in this
work is then presented. Finally, we discuss the computa-
tional complexity of the resulting low complexity DNN
scheme in comparison to the STFT-based DNN approach.

A. Proposed Structure and Motivation

DNN has received much attention in the field of speech
enhancement and automatic speech recognition over the past
few years. The acoustic feature extraction plays a key role
as a pre-processing stage to these tasks. The MFCCs are
one of the most commonly used features in this context
as they provide a spectral representation of speech that
incorporates some aspects of audition. Implementation of
the spectral feature mapping technique using MFCC features
has the advantage of reducing the length of the input feature
vector. Hence, a smaller DNN model (i.e., with reduced
number of nodes) can be employed. Consequently, this
leads to a faster convergence time in training and lower

computational complexity as compared to the conventional
STFT approach. In addition, the process of calculating the
MFCC vectors from the observed speech signal includes
some non invertible stages. It might be possible to make
certain approximations about the information that has been
discarded during this process to allow estimating the magni-
tude spectrum of the input speech as a result of the MFCC
inversion process. Yet, it is still a challenge to ensure that the
MFCC inversion process will achieve perfect reconstruction
without additional computational complexity.

Therefore, in this work, a spectral feature mapping from
noisy MFCC to the enhanced STFT spectrum is introduced
based on DNN modeling, in order to predict the clean
speech signal from a noise corrupted input signal. Mapping
the MFCC features directly into the frequency domain
allows one to bypass the information loss caused by the
inversion of the MFCC process. These are the main moti-
vations for the proposed approach, whose main processing
steps are summarized below.

A block diagram of the proposed DNN approach for
speech enhancement system is illustrated in Fig. 2. The
system operation consists of two stages, that is, training and
enhancement. In both stages, we consider the MFCC of the
noisy speech signal as the input feature to the DNN, where
a more detailed description of the MFCC computation is
provided in the following subsection. In the training stage,
a regression-based DNN model is trained using the training
features from the triplet of the noisy and clean speech,
and noise data. In the enhancement stage, the clean speech
magnitude spectrum is predicted from processing the noisy
speech frames by the well-trained DNN model. Finally, the
clean speech spectrum is estimated via the Wiener filtering
as introduced in Section II.A. The time-domain enhanced
speech signal is obtained via the inverse STFT followed by
the overlap-add method.

B. MFCC Feature Mapping

In the MFCC feature extraction module, the speech signal
is passed through a first order FIR filter in the pre-emphasis
stage to boost the highband formants. Specifically, the filter
output signal is computed as,

y′[n] = y[n]− αy[n− 1] (8)

where α is a pre-emphasis coefficient, 0.95 ≤ α ≤ 1.
Next, the short time Fourier transform of the boosted
speech signal y′[n] is computed as mentioned in Section
II. Specifically, the signal is segmented into consecutive
overlapping frames of length K and each frame is multiplied
with an analysis window. Then for each windowed frame, a
DFT is computed. The squared magnitude of the resulting
STFT coefficients, i.e., |Y ′ν(k)|2, are then passed through a
mel-scale filterbank, consisting of M overlapping triangular
pass-band filters [33], indexed by m ∈ {0, 1, ..,M − 1}.
Specifically, for the m-th pass-band filter, the filter output
denoted as Y ′′ν (m), is calculated as a weighted sum of the
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squared magnitude values within the corresponding pass-
band [33], as expressed by,

Y ′′ν (m) =
K′−1∑
k=0

|Y ′ν(k)|2Wkm (9)

where Wkm > 0 is the (k,m)-th entry of the filterbank
matrix WWW ∈ RK′×M . Next, a logarithmic operation is
applied to the filter outputs. Finally, the outputs are further
processed by taking the Type III discrete cosine transform
(DCT), as expressed by [34],

Cν(p) =
√

2

M

M−1∑
m=0

(log10 Y
′′

ν (m)) cos(
pπ

M
(m− 0.5)) (10)

where Cν(p) refers to the p-th MFCC, p ∈ {0, 1, . . . , P−1},
and P is the number of mel-scale cepstral coefficients. For
convenience, we define the vectors: YYY ′ν = [Y ′ν(0), Y

′

ν(1),
. . . , Y ′ν(K ′ − 1)], YYY ′′ν = [Y ′′ν (0), Y

′′

ν (1), . . . , Y
′′

ν (M − 1)]
and CCCν = [Cν(0), Cν(1), . . . , Cν(P − 1)], also shown in
Fig. 2.

C. Incorporation of MFCC within DNN

While the training procedure is the same as that explained
in section II, the DNN structure is less complex. Each
hidden layer, labeled with index l ∈ {1, 2, . . . , L − 1}
consists of I

′
neurons, where I

′
= I/β, I is the number

of neurons per layer in an STFT-based DNN system with
similar performance, and β > 1 is a complexity reduction
factor. In the training phase, the network is presented with
the input noisy speech matrix CCC= [CCC1, . . . ,CCCN ], the clean
speech target matrix XXX = [XXX 1, . . . ,XXXN ], and the noise
target matrix DDD = [DDD1, . . . ,DDDN ].

In the enhancement stage, at the ν-th frame, the net-
work is presented with the noisy input MFCC vector CCCν .
The output layer, h(L) = [X̂XX ν , D̂DDν ] consists of two K ′-
dimensional prediction components. In this notation, X̂XX ν
= [X̂ν,0, X̂ν,1, . . . , X̂ν,K′−1], and D̂DDν = [D̂ν,0, D̂vν,1, . . . ,
D̂ν,K′−1], where the components X̂ν,k and D̂ν,k provide pre-
liminary estimates of the clean speech and noise spectrum
magnitudes, that is Xν,k ≡ |X(ν, k)| and Dν,k ≡ |D(ν, k)|,
respectively. After DNN processing, the predicted magni-
tude spectrum of the clean speech for the ν-th frame is
derived by applying a Wiener filter, as explained in section
II.

D. Complexity

The computational complexity of an algorithm is often
measured in terms of the number of computer instructions
or operation cycles (e.g., floating point multiplications)
needed to execute the algorithm [35]. It depends upon the
implementation of the individual sub-algorithms composed
the speech enhancement system. In the acoustic feature
extraction the pre-emphasis and windowing require 2K
multiplications per frame. The STFT can be implemented
using FFT with K log2K complexity, as opposed to a
direct realization of the DFT with complexity K2. The

required STFT magnitude coefficients for each frame are
then computed at the cost of 2K ′. These values are used
as input to the mel-scale triangular filterbank with com-
plexity upper bounded by MK ′. The DCT in the mel-scale
cepstral analysis stage is implemented using the fast cosine
transform (FCT) algorithm with complexity M log2M . The
signal reconstruction module involves: updating the speech
and noise PSD based on (5)-(6) at the cost of 6K ′ per frame;
implementing the Wiener filter in (4) at the cost 4K ′ per
frame; and signal reconstruction via inverse STFT, which
requires K log2K multiplications per frame.

We now consider a DNN with L hidden layers, each
containing I neurons for simplicity, and IL output neurons,
and assume that the maximum number of training iterations
is T . In the training stage including the forward and
the backward propagation, the MFCC-based DNN requires
3(L− 2)I ′2T + 3I ′ILT + 2PI ′T + 2ILT multiplications
per frame, while the STFT-based DNN requires 3(L−2)I2T
+ 3IILT + 2K ′IT + 2ILT multiplications per frame,
where I ′ = I/β [36]. Subsequently, the reduced computa-
tional workload of the low complexity DNN, that is I ′ < I
and P < K ′, will allow for a faster running time.

IV. EXPERIMENTAL RESULTS

A. Methodology

The clean speech signals used in our experiment were
selected from the TSP-speech database [37] and consisted of
1500 utterances from 25 different male and female speakers
(60 utterances per speaker). As for the noise signals, five dif-
ferent types were selected from the NoiseX92 database [38],
namely: babble, pink, buccaneer2, factory1, and hfchannel.
The noisy speech utterances were generated by adding
noise sequences to the clean speech, appropriately scaled
to achieve input SNRs of 0, 5 and 10 dB. The sampling
frequency of all the signals was set to its original value of
16 KHz. The noisy speech utterances were divided into two
sets. The first set, referred to as the training and validation
set, includes 18750 utterances, corresponding to 11 hours
of speech, while the second set referred to as the test set,
includes 3750 utterances, corresponding to 2 hours.

To compare the proposed method, we implemented a
standard NMF approach and a STFT-based DNN. The basic
settings for the STFT analysis and synthesis were kept
identical for all three methods. Specifically, a Hanning
window was employed in computing the STFT. The length
of the window was set to K = 1024 with a 75% frame
overlap for both the analysis and the synthesis. The values
of (τx, τd) = (0.4 , 0.9), λ = 0.01 are used as the tem-
poral smoothing factors and the regularization parameter,
respectively. The same dataset was also applied to train
and evaluate all three methods. For the implementation of
the MFCC-based DNN, we consider M = 64 filterbank
channels in the frequency range of [300, 3700] Hz and the
pre-emphasis factor of α = 0.97. In our experiment, the
MFCC-based DNN is input with the corresponding vector
of P = 22 MFCC, while the output consists of two vectors
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Fig. 2. Block diagram of the DNN-based speech enhancement system

containing the K ′ = 513 magnitude coefficients of the
clean speech and noise signals, respectively. We considered
a noise dependent application for implementing the NMF
algorithm based on the Kullback-Leibler divergence (KL)
with 80 basis vectors.

B. Results and Discussion

In order to evaluate the quality of the enhanced signal, the
PESQ [39] and the SDR [40], are used. For all the measures,
a higher value implies a better result.

TABLE I
RUNNING TIME INCLUDING THE TRAINING

Time (min) NMF DNN-STFT DNN-MFCC
Training 5 38 8

The numerical experiments were run on a computer fea-
turing the Intel(R) Xeon(R) central processing unit (CPU), 2
processors operating at the speed of 2.3 GHz, and 64GB of
RAM. In our experiments, we have compared the speech
enhancement performance based on both DNN models
trained with different size of hidden layers, i.e., 1024, 2048,
and 4096. The optimum number of hidden layers resulting
in the best performance of the STFT and the MFCC-based
DNN are 4096 and 1024, respectively.

Table I demonstrates the running time comparison of dif-
ferent algorithms. In the DNN-STFT approach, we trained
a DNN model with 2 hidden layers of size I = 4096 units
each and the STFT features as input. In the DNN-MFCC
approach, the MFCC input features were applied to a DNN
model with 2 hidden layers of size I ′ = 1024 units each.
It can be seen that the proposed DNN structure using the
MFCC features as the input as apposed to the STFT features,
leads to a significant reduction in training time complexity,
where the runtime is reduced by a factor of approximately
5 (4.75) in our experiments.

Fig. 3 gives the average PESQ performance comparison
of different number of MFCC coefficients for pink noise at
5 dB input SNR. As shown, the optimal value of MFCC
coefficient of 22 is chosen for the proposed method.

The PESQ and SDR scores for the benchmark and the
proposed algorithms per each noise type and SNR level are
provided in Tables II. The results presented here show that
the proposed MFCC-based DNN method outperforms the
NMF and STFT-based DNN in most cases, for the objective
performance metrics under consideration.

Fig. 3. Average PESQ results for different numbers of MFCCs

TABLE II
AVERAGE PESQ VALUES FOR PINK (N1), BABBLE (N2),BUCCANEER2

(N3), FACTORY1 (N4), AND HFCHANNEL (N5) NOISE

SNR Algo. Eval. N1 N2 N3 N4 N5

0dB
Noisy PESQ 1.31 1.45 1.13 1.36 1.19

SDR 0.02 0.03 0.01 0.01 0.01

NMF PESQ 1.70 1.52 1.67 1.60 1.62
SDR 5.16 2.42 3.89 4.05 5.45

DNN-STFT PESQ 2.06 1.82 1.90 1.88 2.00
SDR 5.23 2.53 4.03 4.23 5.53

DNN-MFCC PESQ 2.12 1.92 2.03 1.93 2.09
SDR 5.36 2.60 4.11 4.24 5.61

5dB
Noisy PESQ 1.68 1.83 1.52 1.73 1.45

SDR 5.01 5.02 5.01 5.00 5.00

NMF PESQ 2.13 1.92 2.07 2.05 1.80
SDR 10.08 7.28 8.64 8.84 10.01

DNN-STFT PESQ 2.21 2.20 2.08 2.20 2.09
SDR 10.31 7.43 8.32 8.90 11.30

DNN-MFCC PESQ 2.23 2.22 2.26 2.24 2.17
SDR 10.38 7.44 8.39 8.89 11.41

10dB
Noisy PESQ 2.08 2.01 1.90 2.11 1.79

SDR 10.00 10.02 10.01 10.00 10.01

NMF PESQ 2.45 2.24 2.30 2.30 2.22
SDR 14.30 11.45 13.07 13.26 14.03

DNN-STFT PESQ 2.32 2.31 2.24 2.33 2.14
SDR 14.57 11.68 13.80 13.29 14.12

DNN-MFCC PESQ 2.46 2.39 2.42 2.36 2.24
SDR 14.77 11.71 13.83 13.32 14.33

V. CONCLUSION

Deep neural network have been a subject of interest
in many fields, such as speech enhancement. While other
deep learning techniques are promising in the speech en-
hancement task, they are complex systems to implement.
The main objective of this work was to reduce the DNN
complexity by introducing a spectral feature mapping from
the noisy mel frequency cepstral coefficients (MFCC) to the
enhanced short time Fourier transform (STFT) spectrum.
Therefore, a low-complexity DNN model is presented, in
order to efficiently perform noise suppression in a single

2017 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)

335

Authorized licensed use limited to: McGill University. Downloaded on December 09,2022 at 18:55:49 UTC from IEEE Xplore.  Restrictions apply. 



channel speech enhancement. In this paper, we have im-
plemented a regression-based DNN approach for single-
channel speech enhancement. Although we can extend the
proposed approach to RNN, we consider the regression
based feed-forward DNN for our problem. We implemented
the proposed DNN model with different numbers of MFCC
coefficients and network structure and were able to achieve a
significant reduction in runtime by a factor of 4.75. The sys-
tem performance was evaluated using SDR and PESQ scores
which is shown that the proposed approach outperforms
other benchmark algorithms in most cases while remaining
relatively simple.
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