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Abstract—In this paper, we study the effect of oversampling in a perfect
reconstruction (PR) filter bank multi carrier (FBMC) system recently
proposed by the authors. Particularly, we investigate the performance of
this system in the presence of carrier frequency offset (CFO). We show
that the CFO introduces interference components in the receiver. By
exploiting the statistical properties of the received subband signals, the
average of the signal-to-interference ratio (SIR) is derived to exhibit the
tradeoff between performance and efficiency. Furthermore, bit-error-rate
(BER) comparisons of FBMC systems with different oversampling ratios
over frequency-selective and additive white Gaussian noise (AWGN)
channels in the presence of CFO are presented. These results confirm
that oversampling increases robustness of the system against CFO.

I. INTRODUCTION

Multicarrier modulation (MCM) is currently the method of choice
for high speed wireless communications, particularly over frequency-
selective channels. Its sensitivity to imperfect synchronization, includ-
ing carrier frequency offset (CFO), however, limits its performance
and requires employing some countermeasure techniques [1]–[3]. The
most common realization of MCM in standards has been orthogonal
frequency division multiplexing (OFDM). By employing cyclic prefix
(CP) and sacrificing spectral efficiency, OFDM can prevent inter-
symbol interference (ISI). However, there are two harmful effects on
OFDM caused by CFO: the reduction of signal amplitude of each
subcarrier and the introduction of inter-carrier interference (ICI) due
to the loss of orthogonality between subcarriers [1], [2].

To avoid such drawbacks, filter bank multi carrier (FBMC) systems
have been proposed which benefit from improved frequency selec-
tivity through the use of longer, and thus better shaped prototype
filters in the frequency domain. FBMC systems consist of a synthesis
(transmit) and analysis (receive) filter banks (FB), interconnected
by a transmission channel [4]–[7]. The synthesis bank combines its
M subband input signals sampled at the low rate Fs, into a single
output signal with higher sampling rate KFs for transmission over
the channel, where K denotes the upsampling factor. The analysis
bank decomposes the baseband channel output with sampling rate
KFs, into its M constituent subband components with rate Fs.

The FB is said to be critically sampled if K = M , and oversampled
if K > M , while perfect reconstruction (PR) refers to a condition
where the output of the tandem combination of the transmit and
receive FBs (i.e., ideal channel) is a delayed version of the input.
Compared to the critically sampled FBs, oversampled FBs benefit
from additional design freedom that can be used to obtain the PR
property and additional spectral containment, hence better noise
immunity within each subband [5]–[7]. These improvements come
at the cost of increased redundancy, and loss of spectral efficiency.
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Therefore, these redundancies in oversampled FBs should not exceed
those introduced by the cyclic prefix (CP) in OFDM systems to
remain competitive with them.

FBMC systems, like OFDM, are sensitive to CFO; however, it has
been shown that oversampled PR FBMCs can outperform OFDM
systems in the presence of CFO or other channel impairments [6],
[8]–[10]. Therefore, the tradeoff between interference and spectral
efficiency of oversampled FBMC system is a major factor for the
system design and comparison with OFDM. In order to exhibit this
tradeoff, in [11], the interference caused by the channel frequency
selectivity is quantified. However, synchronization error including
CFO is not considered in the analysis. In [8], the authors briefly
discuss the frequency misalignment effect on the performance of
FBMC system and focus on the techniques of offset correction.
Recently, the effects of CFO on general FBMC systems based on
studies and simulation of practical systems has been presented in
[12]. Moreover, in the special case of critically sampled nearly-PR
FBMC system, these effects are reported in [9].

In this paper, to demonstrate and quantize the advantages of over-
sampled PR FBMC system in combating transmission impairments
such as CFO, closed form expressions of signal-to-interference ratio
(SIR) of the system proposed in [6] are provided. The CFO is
modelled by means of a rotating phase ϕ(m) = ej(2πµm) multi-
plying the baseband signal, where µ indicates the frequency offset
normalized with respect to subband spacing. Furthermore, the average
bit-error-rate (BER) in the presence of CFO for OFDM and FBMC
systems with different oversampling ratios in AWGN and frequency-
selective channels is presented. Benefiting from PR property and
oversampling guard bands, it is evident that the considered system
outperforms OFDM and their CFO induced interference reduces
by larger oversampling ratios. Using these measures, the tradeoff
between spectral efficiency and system performance is illuminated
to facilitate the design process.

The paper is organized as follows. In Section II, we discuss the
system model of oversampled PR FBMC system. In Section III, the
demodulated signal is analyzed in the presence of CFO. Closed form
expression of SIR is derived in Section IV. Section V is devoted to
the presentation of experimental results. Finally, Section VI concludes
the work.

II. OVERSAMPLED PR FBMC SYSTEM MODEL

The FBMC system under consideration is depicted in Fig. 1, where
xi[n] denotes the complex-valued data sequence transmitted on the
ith subband, i ∈ {0, . . . ,M − 1}, at discrete-time nT , where T =
F−1
s and n ∈ Z is the discrete-time index at the low sampling rate
Fs. In DFT modulated FBMCs, the transmit and the receive subband
filters can be derived from common prototype filters of length D, with
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Fig. 1. DFT modulated oversampled filter bank transceiver

respective system functions F0(z) =
∑D−1
n=0 f0(n)z−n and H0(z) =∑D−1

n=0 h0(n)zn1. Defining w = e−j2π/M , the transmit and receive
filter for the ith subband (i ∈ {1, . . . ,M − 1}) are respectively
obtained as

Fi(z) = F0(zwi) , Hi(z) = H0(zwi). (1)

In this work, D is restricted to be a multiple of M and K, where
the parameters M and K represent the number of subbands and
the upsampling/downsampling factor, respectively. We also use P to
denote the least common multiple of M and K, and therefore: D =
dPP , with integer dP . As stated before, we consider oversampled
PR FBMC [6], where K > M . In this case, as shown in Fig. 1, the
baseband discrete-time signal is given by

y(m) =

∞∑
q=−∞

M−1∑
i=0

xi(q)fi(m− qK). (2)

The transmission channel is modelled as an FIR filter with system
function C(z) =

∑Q−1
l=0 c[l]z−l; the channel output is corrupted by

the additive noise ν[m]. The input-output relation of the channel can
be expressed as

ŷ(m) =

Q−1∑
l=0

c(l)y(m− l) + ν(m). (3)

At the receiver side, the received signal is filtered with a bank of
matched filters and downsampled to the factor K, thus for each
subband, the constructed signal x̂i(n) can be written as

x̂i(n) =

∞∑
q=−∞

ŷ(q)hi(q − nK). (4)

A. Perfect Reconstruction

To ensure that transmission is free from ISI and ICI, the prototype
filter characteristics are often chosen to satisfy a PR constraint [5].
As in [6], to achieve PR property, it is assumed that the transmit and
receive prototype filters are paraconjugate of each other, i.e. H0(z) =
F̃0(z) or equivalently, h0(n) = f∗0 (n). Therefore, the PR conditions
(i.e., x̂i(n) = xi(n) for all i ∈ {0, . . . ,M − 1} and n ∈ Z) in the
case of an ideal channel (i.e. C(z) = 1 and ν(m) = 0) are expressed
in the time domain as [4]

∞∑
q=−∞

fi(q − pK)f∗j (q − nK) = δi−jδn−p, (5)

for all i, j ∈ {0, . . . ,M−1} and n, p ∈ Z, where δk is the Kronecker
delta (δ0 = 1 and δk = 0 if k 6= 0).

B. Oversampling and Spectral Efficiency

Fig. 2 illustrates the spectral characteristics of the transmitted sig-
nal [5]. FsK/M is the frequency spacing between adjacent subbands,

1For convenience in analysis, Hi(z) is assumed non-causal; in practice,
causality can be restored simply by introducing an appropriate delay in the
receiver.
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Fig. 2. Frequency spectrum of an oversampled FBMC system

where the rate of input signal in each band is Fs = 1/T . In other
words, the transmission bandwidth B = KFs is divided to M equally
spaced subchannels, where each input channel has a bandwidth of Fs
and totally they have a bandwidth of MFs. Therefore, the spectral
efficiency η of the system can be derived as

η =
MFs
KFs

= M/K (6)

It is evident that larger oversampling ratio increases the frequency
spacing and decreases the spectral efficiency. Similarly, OFDM
system with M subbands employs CP of length L in order to combat
the channel impairment and to remove ISI. The spectral efficiency in
this case is η = M/(M + L).

III. EFFECT OF CARRIER FREQUENCY OFFSET

Let us consider that the signal y(m) is transmitted through an
AWGN channel as shown in the baseband equivalent in Fig. 1. The
received signal ŷ(m) in the presence of an additive white Gaussian
noise ν(m) with zero mean and variance E[|ν(m)|2] = N0/Es, is
given by

ŷ(m) = ej2πµmy(m) + ν(m), (7)

where µ is a normalized CFO with respect to subband spacing
FsK/M . By employing the paraconjugate of transmit filters on the
receiver side, the constructed signal x̂i(n) for each subband can be
rewritten as

x̂i(n) =

∞∑
q=−∞

ŷ(q)f∗i (q − nK). (8)

Furthermore, x̂i(n) can be rewritten in terms of input signals xi(n)
as

x̂i(n) =

∞∑
q=−∞

ej2πµqxi(n)fi(q − nK)f∗i (q − nK)

+

∞∑
p,q=−∞
p6=n

ej2πµqxi(p)fi(q − pK)f∗i (q − nK)

+

∞∑
p,q=−∞

M−1∑
r=0
r 6=i

ej2πµqxr(p)fr(q − pK)f∗i (q − nK)

+

∞∑
q=−∞

ν(q)f∗i (q − nK), (9)

where first, second, third and fourth terms correspond to the at-
tenuated signal, ISI terms, ICI terms, and channel additive noise,
respectively. By defining Γµi,r(p, n) as

Γµi,r(p, n) =

∞∑
q=−∞

ej2πµqfr(q − pK)f∗i (q − nK) (10)
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and substituting it in (9), we can write

x̂i(n) = xi(n)Γµi,i(n, n) +

∞∑
p=−∞
p6=n

xi(p)Γ
µ
i,i(p, n)

+

∞∑
p=−∞

M−1∑
r=0
r 6=i

xr(p)Γ
µ
i,r(p, n) + νi(n), (11)

where νi(n) =
∑∞
q=−∞ ν(q)f∗i (q − nK). By assuming normalized

input signal, i.e. E[|xi|2] = 1, and the fact that the background noise
is independent of the ICI and ISI terms, the signal to interference
plus noise ratio (SINR) of the ith subcarrier at time instant n can be
expressed:

ρSINR(i, n) = (12)
|Γµi,i(n, n)|2∑M−1

r=0

∑∞
p=−∞ |Γ

µ
i,r(p, n)|2 − |Γµi,i(n, n)|2 +N0/Es

If we employ the quadrature phase-shift keying (QPSK) constellation,
then the lower bound for the average BER of the system over the
AWGN channel with CFO is given by

Pb=Q
(√

2ρSINR(i, n)
)(

1− 1

2
Q
(√

2ρSINR(i, n)
))

(13)

IV. SIR ANALYSIS

To have a better understanding of CFO induced interferences, we
derive the SIR to analyze the tradeoff between the spectral efficiency
and performance degradation of the transceiver over the AWGN
channel with CFO. The average energy of the signal S can be written
as

S =
1

M

M−1∑
i=0

|Γµi,i(n, n)|2 (14)

Furthermore, the interference level I which is the average of all the
subbands interferences is

I =
1

M

M−1∑
i=0

(
M−1∑
r=0

∞∑
p=−∞

|Γµi,r(p, n)|2− |Γµi,i(n, n)|2
)

=
1

M

M−1∑
i=0

M−1∑
r=0

∞∑
p=−∞

|Γµi,r(p, n)|2− S (15)

Therefore, the SIR denoted by ρ = S/I is given by

ρ=
1
M

∑M−1
i=0 |Γ

µ
i,i(n, n)|2

1
M

∑M−1
i=0

(∑M−1
r=0

∑∞
p=−∞|Γ

µ
i,r(p, n)|2− |Γµi,i(n, n)|2

) (16)

In order to simplify the SIR , |Γµi,r(p, n)|2 is developed by
using the fact that subband filters are DFT modulated, i.e. fi(p) =
f0(p)e−j2πip/M .

|Γµi,r(p, n)|2 =

∞∑
q,q′=−∞

ej2πµ(q−q
′)fr(q − pK)f∗i (q − nK)

×f∗r (q′ − pK)fi(q
′ − nK)

=

∞∑
q,q′=−∞

ej2π(µ−
i−r
M

)(q−q′)f0(q)f∗0 (q + (p− n)K)

×f∗0 (q′)f0(q′ + (p− n)K). (17)

Furthermore, by considering v = i − r and l = p − n, (17) can be
rewritten as

|Γµi,r(p, n)|2 = |γµv (l)|2 (18)

where γµv (l) is

γµv (l) =

∞∑
q=−∞

ej2πq(µ−
v
M

)f0(q)f∗0 (q + lK) (19)

It is clear that due to the DFT modulation, the signal and inter-
ference level are same for all the subbands. The time average signal
power S can be obtained as the following form:

S =
1

M

M−1∑
i=0

|Γµi,i(n, n)|2 = |γµ0 (0)|2

=

∞∑
q=−∞

∞∑
q′=−∞

ej2πµ(q−q
′)|f0(q)|2|f0(q′)|2. (20)

Similarly, I can be rewritten as

I =
1

M

M−1∑
i=0

M−1∑
r=0

∞∑
p=−∞

|Γµi,r(p, n)|2− S

=

M−1∑
v=0

∞∑
l=−∞

|γµv (l)|2 − |γµ0 (0)|2 (21)

Finally, by inserting (20) and (21) into (16), closed form expression
of SIR in terms of prototype filter coefficients can be derived

ρ =
|γµ0 (0)|2∑M−1

v=0

∑∞
l=−∞ |γ

µ
v (l)|2 − |γµ0 (0)|2

(22)

A. SIR for Small CFOs

It is straightforward to derive the limit of Γµi,r(p, n) when µ
approaches zero by using PR equation (5) as

lim
µ→0

Γµi,r(p, n) =

∞∑
q=−∞

lim
µ→0

ej2πµqfr(q − pK)f∗i (q − nK)

=

∞∑
q=−∞

fr(q − pK)f∗i (q − nK)

= δi−rδn−p (23)

Therefore, limS when µ→ 0 can be derived as

lim
µ→0

S = lim
µ→0
|Γµi,i(n, n)|2 = |δi−iδn−n|2 = 1 (24)

Moreover, it can be stated about equation (15)

lim
µ→0

I = lim
µ→0

1

M

M−1∑
i=0

M−1∑
r=0

∞∑
p=−∞

|Γµi,r(p, n)|2− S (25)

lim
µ→0

I = lim
µ→0

1

M

M−1∑
i=0

M−1∑
r=0

∞∑
p=−∞

|δi−rδn−p|2− 1 = 0 (26)

We can observe that I approaches zero as µ approaches zero, which
is caused by the PR property of the system. Thus, ρ = S/I will go
to infinity around µ = 0 where the ISI and ICI terms are negligible
due the PR constraint of the system.

Finally, we investigate (22), and try to approximate SIR for small
CFOs. Since q just varies in the range of filter length D in (18),
when µ is in the vicinity of zero, (18) can be well approximated by
keeping the first two dominant terms of Taylor series ej2πµ(q−q

′) '
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Fig. 3. Signal power S = |γµ0 (0)|2

1+j2πµ(q−q′). Consequently, by using PR property (5), we obtain

|γµv (l)|2 ' |
∞∑

q=−∞

e−j2π
v
M
qf0(q)f∗0 (q + lK)|2 + j2πµCv(l)

= |
∞∑

q=−∞

fv(q)f∗0 (q + lK)|2 + j2πµGv(l)

= δvδl + j2πµGv(l) (27)

where Gv(l) is defined as

Gv(l) =

∞∑
q,q′=−∞

(q − q′)e−j2π
v
M

(q−q′)

×f0(q)f∗0 (q + lK)f∗0 (q′)f0(q′ + lK) (28)

Consequently, (22) can be approximated as

ρ ' 1 + j2πµG0(0)

j2πµ
∑M−1
v=0

∑∞
l=−∞Gv(l)−G0(0)

(29)

It can be shown that G0(0) = 0; therefore, we can further simplify
the SIR as

ρ ' 1

µ

(
1

j2π
∑M−1
v=0

∑∞
l=−∞Gv(l)

)
(30)

It can be observed in (30) that when µ is small, SIR is proportional
with 1/µ.

V. EXPERIMENTAL RESULTS

This section is dedicated to the performance comparison of over-
sampled PR FBMC systems in the presence of CFO, where these
systems have M = 64 subcarriers with several different upsampling
factors K = 72, 80, 96, 112, 128. Therefore, spectral efficiency
η = M/K, defined in Section II-B as the ratio of the number
of subbands over the upsampling factor, varies from η = 0.5 to
η = 0.89. According to the design procedure [6], prototype filter
length D = dPP , where P is the least common multiple of M and
K and integer dP . Concerning implementation complexity, we fixed
dP = 3 for all the oversampled FBMCs which denotes the number
of non-zero filter taps in the polyphase structure of the system. Thus,
the filter lengths are D = 1728, 960, 576, 1344, 384 corresponding
to upsampling factor K = 72, 80, 96, 112, 128, respectively.

Fig. 4. signal-to-interference ratio ρ (dB)

A. Oversampling Effect on Signal and Interference

In Fig. 3, the attenuated signal power values S of the mentioned
FBMC systems for different CFOs are depicted. It has been observed
that the values of S for µ and −µ are equal and it is a even function
with respect to CFO. Therefore, in this experiment, µ is just varied
between 0 to 50% of carrier spacing (subband spacing is FsK/M ).
As expected, the highest value of S is at µ = 0 which coincides
with PR case. In accordance with analysis in Section IV-A, Fig. 3
indicates that the signal attenuation in the presence of small CFOs, is
similar among the different FBMCs. However, with larger frequency
offsets, the FBMC systems with longer filters benefits from slightly
less attenuated signal.

By considering the interference effect, SIR versus CFO for the
transceivers with different spectral efficiencies are depicted in Fig. 4.
Similar to the C, SIR is also an even function with respect to CFO.
As expected, with lower spectral efficiency M/K, i.e. larger subband
spacing, better immunity against CFO can be achieved. We can
observe that SIR value dramatically increase when µ → 0, which
is consistent with the results in Section IV-A. Moreover, the lowest
SIR in the range of smaller CFOs (which is more common) are for
the most spectral efficient FBMC system with M = 64 and K = 72.
On the other hand, the highest SIR corresponds to two less efficient
systems with K = 112, 128. One of them (K = 128) is benefiting
from large subband spacing while the other one (K = 112) takes
advantage of its long prototype filter and relatively large subband
spacing. In the range of larger CFOs, µ > 20%, spectral efficiency
η differentiates the curves placement. In this range of µ, better SIR
ratios can be achieved by sacrificing the spectral efficiency.

B. Bit-error-rate

In order to practically asses the effectiveness of oversampling
against CFO, the BER of FBMC systems in AWGN and frequency-
selective channels are compared. Consider the channel model (3), in
case of frequency-selective channel, it has been modelled to consist
of Q = 5 independent Rayleigh-fading taps with an exponentially de-
caying power delay profile, i.e. E[|c(l)|2] = αe−l/4, l ∈ {0, · · · , Q−
1}, where α is a constant such that

∑Q−1
l=0 E[|c(l)|2] = 1. Since the

number of subbands is relatively large M = 64 each subchannel
could be approximated by a flat complex gain. Thus, employing

947



2 4 6 8 10 12 14 16
10-5

10-4

10-3

10-2

10-1

B
E

R

Es/N0

 

 

M/K=64/72=0.89
M/K=64/80=0.8
M/K=64/96=0.66
M/K=64/112=0.57
M/K=64/128=0.5
OFDM η=0.89

Fig. 5. BER vs. Es/N0 with CFO value µ = 5% (solid lines: AWGN
channel; dashed lines: frequency-selective channel).

a simple one-tap per subband equalizer is sufficient to combat the
frequency selectivity of the channel. Moreover, the channel is fixed
in each run but independent from one run to another, where a number
of 104 Monte Carlo trials has been performed. Note that, in case of
AWGN channel, Q = 1 and c[0] = 1. For comparison purposes,
the performance of OFDM system having M = 64 subcarriers with
similar equalizer is also provided. Since CP can just remove ISI
and larger CP length does not lead to reduction of CFO induced
ICI [1], [9], we only report the ISI-free OFDM where the length
of CP is longer than channel impulse response L = 8, where
η = M

M+L
= 0.89.

The BER of the mentioned FBMC systems and OFDM for different
signal to noise ratios (SNR), i.e., Es/N0 and CFO values are depicted
in Fig. 5 and Fig. 6, respectively. In Fig. 5, there is a fixed CFO
µ = 5% in all the transceiver systems. It is visible that OFDM has the
worst BER among all the schemes. Moreover, to have a same BER
in AWGN and frequency-selective scenarios among all the FBMC
systems, by reducing 8% of spectral efficiency, 0.5 dB gain can be
achieved.

In Fig. 6, we varied CFO value from 0 to 15% while keeping
the SNR value Es/N0 = 10 dB fixed for all the schemes. It can
be observed that BER increases monotonically as CFO increases.
For the small CFOs (µ < 2%), the dominant interference factor is
background noise. Therefore, the BER is not affected relatively for all
the schemes in that range of CFO. However, as CFO increases, the
CFO induced interferences become the dominant hindrance, which
is confirming the results presented in Fig. 4. By sacrificing spectral
efficiency, lower BER could be expected, as FBMC system with η =
0.5 can tolerate up to 7% more CFO compared to OFDM while
having same BER. Furthermore, by decreasing the spectral efficiency
of FBMC systems for roughly 8%, robustness against 1% more CFO
can be achieved to have a same BER in both channels.

VI. CONCLUSION

The effect of different oversampling ratios for FBMC transceivers
have been analyzed and compared in the presence of CFO. Generally,
in addition to attenuating the signal, CFO can introduce various
interference components including ISI and ICI. By analyzing the
demodulated signal at the receiver, we were able to investigate the
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Fig. 6. BER vs. CFO with SNR Es/N0 = 10 dB (solid lines: AWGN
channel; dashed lines: frequency-selective channel).

interference terms and derive SIR of the system. A better under-
standing of the tradeoff between the spectral efficiency and system
performance is provided by obtained SIR. In addition to confirming
the analysis, the experimental results exhibited the gained robustness
against CFO by oversampling in FBMC systems.
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