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Abstract— Recently, a wideband spectrum sensing scheme
referred to as multiband joint detection has been proposed by
Quan et al., in which a set of frequency dependent detection
thresholds are optimized to achieve the best trade-off between
aggregate measures of opportunistic throughput and interference
to primary users in cognitive radio (CR) networks. While this
scheme shows significant performance gains over benchmark
approaches, it employs a frequency-decoupled detector structure
that is not optimal in the presence of correlation between subband
occupancies, a common situation in CR applications. In this
paper, we investigate how a frequency-coupled optimum linear
energy combiner (OLEC) structure, recently proposed for single
user scenarios, can be integrated into the above multiband joint
detection framework to take further advantage of subband occu-
pancy correlation in wideband spectrum sensing. We first analyze
the performance of the single-user OLEC and derive expressions
for its probabilities of false alarm and missed detection. Using
these expressions, we then formulate joint optimization problems
for the detection thresholds used by a bank of subband OLECs,
with the aim to maximize the aggregate opportunistic throughput
under interference constraints. Through numerical experiments
with a Markov model of subband occupancy, we show that the
use of the OLEC in wideband spectrum sensing can significantly
enhance CR performance in terms of these global metrics, when
compared to the decoupled multiband processing structure.

I. INTRODUCTION

Cognitive radio (CR) is seen as a key enabling technology
for the incorporation of dynamic spectrum access in future
wireless networks [1], [2]. Indeed, by maintaining awareness
of the radio environment through spectrum sensing and adjust-
ing transmission parameters accordingly, CR can significantly
improve communication efficiency and network throughput.
In recent years, CR has gained further importance as it is an
integral component of the IEEE 802.22 standard [3] and the
focus of several other emerging applications [4].

By definition, CR terminals have built-in spectrum sensing
capabilities that allow them to detect and opportunistically
use spectrum holes, that is, momentarily silent portions of the
licensed frequency spectrum. In this context, one refers to a
user of the wireless system to which the frequency band has
been licensed, such as a WLAN or broadcast television, as a
primary user (PU), and to the CR of interest as a secondary
user (SU). In order to maximize the opportunistic throughput
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without adding unacceptable level of interference to the PUs,
spectrum sensing must be fast and accurate. In the literature,
several approaches have been considered for this application,
including matched filtering, feature extraction (e.g., cyclo-
stationarity) and energy detection (ED) [5].

Because of its low implementation complexity and robust-
ness to modeling assumption, ED has been favored in many
recent studies, e.g. [6], [7], [8]. In this approach, the received
signal energy in a given frequency band is used in a binary
hypothesis test (i.e. compared to a threshold) to decide the
occupancy state of that band. ED can be applied in both
narrowband and wideband settings where in the latter case, it
is typically performed by dividing the broad frequency band
into smaller component subbands and performing narrowband
detection in each subband independently [9].

Recently, joint multiband ED has shown great promises for
spectrum sensing in CR networks [10], [11]. In particular, [10]
introduces a scheme in which the information theoretic capac-
ity and the cost of interfering with the PUs, for each subband,
are applied to define global measures of aggregate opportunis-
tic throughput and aggregate interference, respectively. This
enables the design of an optimum set of detection thresholds
that maximize the opportunistic throughput aggregated over all
the subbands while keeping the aggregate interference under a
prescribed level. The use of such jointly optimized thresholds
leads to significant performance improvements over the use of
fixed thresholds across all subbands.

ED approaches for wideband spectrum sensing currently
employ a decoupled processing structure in which hypothesis-
testing in any given subband is carried out based on the
observed signal energy in that particular subband only, i.e.,
independently of the other available subband signals. This is
so even for the above joint multiband schemes, where only the
detection thresholds used in individual subbands are optimized
from a wideband perspective. While the frequency-decoupled
structure is optimal when the occupancies of the frequency
subbands are independent of each other, this condition is rarely
satisfied, especially in the presence of wideband PU signals,
such as in broadcast television or WLAN [12].

To overcome this limitation in wideband spectrum sensing
and improve detection performance, some authors have re-
cently investigated new processing structure that can exploit
correlation between the occupancies of frequency subbands
[13]. For instance, [14] considers an autoregressive model to
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track the strengths of PU signals along frequencies and delimit
their spectral support, which in turn facilitates ED over the
identified bands. In [15], a novel detector structure is proposed
in which multiband energy measurements from a CR terminal
are linearly combined, using weights derived from a minimum
mean-square error (MMSE) criterion, to form a summary
statistic for binary detection in each subband. This frequency-
coupled detector structure, referred to as the optimum linear
energy combiner (OLEC), is shown to significantly outperform
the traditional frequency-decoupled detector.

In this paper, we investigate how to integrate the OLEC
detector [15] into the multiband joint detection framework
of [10], in order to further exploit a priori knowledge of
subband occupancy correlation in wideband spectrum sensing.
We first analyze the performance of the OLEC detector [15]
and derive closed-form expressions for its probabilities of
false alarm and missed detection. Using these expressions,
we then formulate joint optimization problems for the set of
detection thresholds, with the aim to maximize the aggre-
gate opportunistic throughput under interference constraints,
or alternatively, minimize the aggregate interference under
throughput constraints. Through numerical experiments, we
demonstrate that the application of the OLEC in wideband
spectrum sensing frameworks can significantly enhance the
detection performance in terms of these global metrics, when
compared to a decoupled multiband processing structure.

The rest of this paper is organized as follows. The system
model is described in Section II. The single-user OLEC
detector is discussed in Section III. In Section IV, the perfor-
mance metrics of single-user OLEC detector are derived and
subsequently applied in the formulation of the joint multiband
optimization problem. The simulation results are presented in
Section V. Finally, conclusions are drawn in Section VI.

II. WIDEBAND SYSTEM MODEL

We consider a scenario in which a CR unit detects the pres-
ence of a PU signal over a given wideband frequency range.
Assuming a frame-based K-point discrete Fourier Transform
(DFT) operation, the m-th sample of the signal observed by
the SU in the k-th subband can be expressed as (see e.g. [16]):

Rk(m) = HkSk(m) + Vk(m), (1)

where k ∈ {0, 1, . . . ,K− 1} is the frequency index, m ∈
{0, 1, . . . ,M − 1} is the frame index, and M is the total
number of available frames for detection. In (1), Sk(m), Hk

and Vk(m) respectively denote: the PU signal component in
the k-th frequency subband at time m; the channel response
between the PU and the SU; and the additive receiver noise.
Following a common practice in the spectrum sensing litera-
ture (see, e.g., [6]), a probabilistic formulation is assumed for
the signal and noise frequency samples. The signal samples
of the PU, {Sk(m)}, and the background noise samples
of the SU, {Vk(m)}, are modeled as independent random
processes, whereby, for any given state of occupancy of the
wideband channel, samples from each process are independent
across frequency and frame indices, and obey a zero-mean

complex circular Gaussian distribution. The noise variance,
σ2
k , E[|Vk(m)|2], and the channel squared magnitude re-

sponse, Gk , |Hk|2, are assumed to be known from a priori
estimation and to remain approximately constant during the
processing interval. In the absence of a PU signal in subband
k (hypothesis H0,k), we set E[|Sk(m)|2] = 0, while in the
presence of a PU signal in subband k (hypothesis H1,k), we
set E[|Sk(m)|2] = 1 without loss of generality. In the former
case, (1) reduces in effect to Rk(m) = Vk(m).

Here, we extend this formalism to take advantage of a
priori knowledge about the state of occupancy of the multiple
frequency subbands by the PU. Specifically, we model the oc-
cupancy of the k-th subband by means of a binary (indicator)
random variable, Bk, with realization bk ∈ {0, 1}, where 0
represents a spectrum hole, while 1 indicates the presence of
the PU signal in the k-th subband. The multiband spectrum
occupancy is represented by means of random vector:

B = [B0, B1, . . . , BK−1]T (2)

with realizations b = [b0, b1, . . . , bK−1]T ∈ {0, 1}K . We
define the mean vector µ = E[B], with entries µi = E[Bi] =
Pr(Bi = 1), and the correlation matrix Λ = E[BBT ], with
entries λi,j = E[BiBj ] = Pr(Bi = Bj = 1). Note that the
conditional signal power of the PU in the k-th subband, given
the spectrum occupancy B = b, may be expressed compactly
as E[|Sk(m)|2

∣∣B = b] = bk. We assume that random
vector B is independent of the noise processes, {Vk(m)}, and
remains unchanged during the detection interval.

III. SINGLE-USER OLEC DECTOR

Within the above Bayesian framework, the maximum a
posteriori (MAP) estimator of B, given the observations
{Rk(m)} for k ∈ {0, . . . ,K−1} and m ∈ {0, . . . ,M−1}, is
developed in [15] and shown to be a function of the received
signal energies in each subband over the M frames of interest,
where the subband energies are given by:

Yk =

M−1∑
m=0

|Rk(m)|2. (3)

In the special case where the subband occupancies are in-
dependent, i.e. PB(b) =

∏K−1
k=0 PBk

(bk), where PBk
(bk) =

Pr(Bk = bk), the multiband MAP estimator decouples into K
parallel narrowband detectors, in which an independent scalar
binary hypothesis test is performed on each subband energy
Yk. This assumption is commonly adopted in the context of
wideband spectrum sensing. However, for the general case
where the subband occupancies are correlated, the MAP detec-
tor leads to a non-linear integer optimization in K-dimensional
space, with high computational complexity of order 2K .

Alternatively, the frequency-coupled optimum linear energy
combiner (OLEC) is proposed in [15] as a mean to exploit
the correlation between subband occupancies in the single-
user detection process, without the computational cost of
the MAP estimator. In this approach, Bk is estimated as
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an affine transformation of the random energy vector Y =
[Y0, Y1, . . . , YK−1]T :

B̂k = ξTk Y + εk, (4)

where the weight vector ξk and affine coefficient εk are opti-
mized for best performance. The optimum weight vector in the
minimum mean-square error (MMSE) sense, i.e. minimizing
the objective J(ξk, εk) = E[(B̂k −Bk)2], is obtained as:

ξok = E[ȲȲT ]−1E[ȲB̄k] (5)

where we define the centered quantities Ȳ = Y − E[Y] and
B̄k = Bk − µk, while the optimum value of εk is given by
εok = µk − ξok

TE[Y].
Convenient expressions for the various moments needed in

(5) are derived as follows. We first note that under the signal
model assumptions in Section II, we have E[|Si(m)|2] =
E[E[|Si(m)|2

∣∣Bi]] = E[Bi] = µi, i ∈ {0 . . . ,K − 1}. Then,
using (1) and (3), we obtain:

E[Yi] = E
[M−1∑
m=0

|Ri(m)|2
]

= M
(
µiGi + σ2

i

)
. (6)

To evaluate E[BkYi], we observe that E[Bk|Si(m)|2] =
E[E[Bk|Si(m)|2

∣∣B]] = E[BkBi] = λi,k. Again, using (1)
and (3), we can write:

E[BkYi] = E
[
Bk

M−1∑
m=0

|Ri(m)|2
]

= M
(
λi,kGi + µkσ

2
i

)
.

(7)

Then, using (6) and (7), we obtain

E[B̄kȲi] = E[BkYi]− E[Bk]E[Yi]

= M
(
λi,k − µiµk

)
Gi. (8)

Next, we consider the moment E[YiYj ]. As before, using (1)
and (3), we have

E[YiYj ] =

M−1∑
m=0

M−1∑
m′=0

E
[
|Ri(m)|2|Rj(m

′)|2
]

= M2GiGjE[BiBj ] +MGiGiE[Bi]δi,j

+M2Giσ
2
jE[Bi] + 2MGiσ

2
iE[Bi]δi,j

+M2Gjσ
2
iE[Bj ] +M(M + δi,j)σ

2
i σ

2
j (9)

where δi,j = 1 if i = j and 0 otherwise. The above derivation
makes use of a standard formula for the 4th moment of jointly
Gaussian complex circular random variables [17], [18]. Using
(9), we finally obtain

E[ȲiȲj ] = E[YiYj ]− E[Yi]E[Yj ]

= M2
(
λi,j − µiµj

)
GiGj

+M(G2
iµi + 2Giσ

2
i µi + σ4

i )δi,j . (10)

Using (4) and (5), the resulting OLEC detector for the K
subbands can be represented by the following hypothesis tests:

Zk = ξok
TY

H1,k

R
H0,k

γk, k = 0, 1, ...,K − 1 (11)

where, for convenience, the bias term εok is absorbed in the
detection threshold γk. The OLEC detector is computationally
much simpler than joint MAP detection, yet its use of the
MMSE linear combiner weight vector ξok from (5) ensures that
available a priori knowledge – about the state of occupancy
of the multiple subbands comprising the frequency band of
interest – is exploited optimally.

IV. SINGLE-USER MULTIBAND JOINT DETECTION

Our objective is to develop an efficient detector that will
enable the SU to determine the wideband PU’s spectrum oc-
cupancy, which is tantamount to estimating the unknown value
of binary vector B. This problem has been considered in [10],
where the aim is to jointly design a set of detection thresholds
that maximize the opportunistic throughput aggregated over all
the subbands, while keeping the aggregate interference under
a critical value. However, the resulting scheme employs a
decoupled processing structure, which neglects the correlation
between subband occupancies. In [15], it is demonstrated that
the use of the frequency-coupled OLEC detector can lead to
substantial improvement in detection performance over the
traditional decoupled structure used in the existing literature.

Here, we consider the use of the OLEC detector (11) in
a multiband joint detection framework. We proceed in two
steps: (1) We derive the probabilities of false alarm and missed
detection in each subband of the single-user OLEC detector;
(2) We optimize the detection thresholds used in the different
subbands via the joint multi-band approach in [10].

A. Performance Metrics

In the present context, a false alarm in the kth subband
refers to a situation where a decision is made in favor of
H1,k (occupied band) when H0,k is actually true (spectrum
hole); while a missed detection refers to the opposite situation,
i.e. deciding in favor of H0,k when H1,k is true. For M
large, the central limit theorem dictates that Yk in (3), and
hence, Zk (11), are approximately normally distributed under
each hypothesis. Therefore, the probabilities of false alarm and
missed detection associated with (11) can be expressed as:

P
(k)
f (γk) = Q

(
γk − E[Zk|Bk = 0]√

Var[Zk|Bk = 0]

)
, (12)

P (k)
m (γk) = 1−Q

(
γk − E[Zk|Bk = 1]√

Var[Zk|Bk = 1]

)
, (13)

where Q(x) , (1/
√

2π)
∫∞
x
e−t

2/2dt and

E[Zk|Bk = bk] = ξok
TE[Y|Bk = bk], (14)

Var[Zk|Bk = bk] = ξok
TE[ȲȲT |Bk = bk]ξok. (15)

Similar to (6)-(10), it can be shown that:

E[Yi|Bk = bk] = M(µi|kGi + σ2
i ), (16)

E[ȲiȲj |Bk = bk] = M2GiGj(λi,j|k − µi|kµj|k)

+M(µi|kG
2
i + 2µi|kGiσ

2
i + σ4

i )δi,j ,
(17)
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where µi|k ≡ E[Bi|Bk = bk], and λi,j|k ≡ E[BiBj |Bk = bk].
These conditional moments may be empirically measured in a
live network or computed using a suitable occupancy model.

B. OLEC-Based Multiband Joint Detection
Here, we consider a multiband joint detection framework

where we seek the optimum use of the unoccupied spectrum
without introducing undesirable interference to the PU sys-
tems. In order to achieve this, we quantify the net spectrum
use and the net interference addition using two global (i.e.,
wideband) metrics, as originally proposed in [10]. Using (11)-
(13), we begin by defining the following vectors:

γ = [γ0, γ1, . . . , γK−1]T , (18)

Pf (γ) = [P
(0)
f (γ0), . . . , P

(K−1)
f (γK−1)]T , (19)

Pm(γ) = [P (0)
m (γ0), . . . , P (K−1)

m (γK−1)]T . (20)

Using these notations, the aggregate opportunistic throughput
available to the SU and the aggregate interference to the PU
can be defined as follows, respectively:

R(γ) , rT [1−Pf (γ)], (21)

C(γ) , cTPm(γ). (22)

In (21), vector r = [r0, r1, . . . , rK−1]T , where rk ≥ 0
represents the throughput achievable over the k-th subband by
the SU. The value of rk can be determined from experimental
measurements (channel sounding) in a given radio environ-
ment or, otherwise, estimated using Shannon theoretic capacity
formula [19]. In (22), vector c = [c0, c1, . . . , cK−1]T , where
ck ≥ 0 represents the cost associated with interfering with the
PU in the k-th subband. Given these global metrics, we seek
a jointly optimum set of detection thresholds, γ, that achieves
one of the following:
• Maximize the aggregate opportunistic throughput given

an upper bound, ε > 0, on the aggregate interference;
• Minimize the aggregate interference given a lower bound,
δ > 0, on the aggregate opportunistic throughput.

Furthermore, in order to limit the interference and achieve a
minimum opportunistic utilization in each subband, we impose
the constraints:

P (k)
m (γk) ≤ αk, P

(k)
f (γk) ≤ βk (23)

for k = 0, 1, . . . ,K − 1, where it is realistic to assume
0 ≤ αk ≤ 1/2 and 0 ≤ βk ≤ 1/2. Using (12)-(13) and the fact
that the function Q(x) is monotonically decreasing, the above
constraints on P

(k)
m (γk) and P

(k)
f (γk) can be transformed

into the following linear constraints on the feasible set of the
threshold vector γ:

γmin,k ≤ γk ≤ γmax,k (24)

γmin,k , E[Zk|Bk = 0] +Q−1(βk)
√

Var[Zk|Bk = 0],

γmax,k , E[Zk|Bk = 1] +Q−1(1− αk)
√

Var[Zk|Bk = 1],

where the expressions for the conditional mean and variance of
Zk are available from Section IV-A. Therefore, the multiband
joint optimization problems can be formulated as follows:

TABLE I
POWER DELAY PROFILE OF 4-PATH FREQUENCY-SELECTIVE FADING

CHANNEL IN A SINGLE-USER CR NETWORK

Delays (ns) 0 20 50 120
Av. Power Gain (dB) −2 −8 −19 −21

• Maximization of aggregate opportunistic throughput with
constraint on aggregate interference:

max
γ

R(γ) s.t. C(γ) ≤ ε, γmin,k ≤ γk ≤ γmax,k (25)

• Minimization of aggregate interference with constraint on
aggregate opportunistic throughput:

min
γ
C(γ) s.t. R(γ) ≥ δ, γmin,k ≤ γk ≤ γmax,k (26)

V. NUMERICAL RESULTS

In this section, numerical results are presented to evaluate
the comparative performance of the frequency-coupled OLEC-
based detector and the traditional frequency-decoupled detec-
tor within the multiband joint optimization framework of [10].

We consider a wideband frequency spectrum of 48 MHz
bandwidth, which is equally divided into K = 8 subbands. For
each subband, the maximum probabilities of missed detection
and false alarm are set to αk = 0.2 and βk = 0.5, respectively.
We model the correlation between subband occupancies using
a homogeneous Markov chain defined over the discrete fre-
quency index k. The initial occupancy state of the chain, B0,
is set to 1 with probability PB0

(1) = 0.5, while the occupancy
states at frequencies k = 1, . . . ,K − 1 are generated by
means of a binary symmetric transition model with parameter
p denoting the probability of a change in occupancy, that is:
PBk+1|Bk

(1|0) = PBk+1|Bk
(0|1) = p. Given this model, the

moments µi, µi|k, λi,j and λi,j|k introduced in Section II
and Section IV can be derived analytically, and subsequently
P

(k)
f (γk) and P

(k)
m (γk) can be computed exactly from (12)

and (13) respectively.
The correlation coefficient between neighboring subband

occupancies, Bk and Bk+1, is set to ρ = 1 − 2p = 0.7.
The channel between the PU and CR experiences frequency-
selective fading with L = 4 resolvable paths, where the delay
and average power gain for each path are given in Table I.
The additive noise power σ2

k is normalized to 1. The design
parameters for the multiband joint detection, i.e. the channel
squared magnitude, the opportunistic rate (in kbps) and the
interference penalty for each subband, are given in Table II.
Finally, M = 100 frames are used to compute the subband
energies. The numerical results presented in this section are
produced by solving the above inequality-constrained con-
vex optimization problems (25) and (26). Efficient numerical
search algorithms such as the interior-point method can be
used to find the optimum solution. In our work, we use the
MATLAB routine fmincon, which provides implementations
of several constrained minimization algorithms [20].

Fig. 1 plots the maximum aggregate opportunistic through-
put achievable by the SU against the constraint ε on the
aggregate interference to the PU. By exploiting a priori
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TABLE II
PARAMETERS USED IN THE SINGLE-USER MULTIBAND JOINT

DETECTION EXPERIMENT

k 0 1 2 3 4 5 6 7
Gk 0.61 0.49 0.35 0.25 0.23 0.35 0.52 0.59
rk 612 524 623 139 451 409 909 401
ck 1.91 8.17 4.23 3.86 7.16 6.05 0.82 1.30
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Fig. 1. Maximum aggregate opportunistic throughput of SU against the
constraint on aggregate interference to PU.

knowledge of the correlation between subband occupancies,
the frequency-coupled OLEC detector (Zk = ξok

TY) results
in significant throughput enhancement over the traditional
frequency-decoupled scheme in [10] (Zk = Yk), and this over
a wide range of interference constraints. The same argument
is extended to a scenario where the SU targets a specific
aggregate opportunistic throughput with minimal attainable
aggregate interference, as shown in Fig. 2. That is, the use
of the OLEC in multiband joint ED reduces the interference
level imposed on the PU, especially at higher data rates.

VI. CONCLUSION

In this paper, we have presented a multiband joint detection
scheme based on the OLEC detector for wideband CRs.
The proposed scheme, which employs a frequency-coupled
processing structure, has the advantage of exploiting a priori
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Fig. 2. Minimum aggregate interference to PU against the constraint on
aggregate opportunistic throughput of SU.

knowledge of subband occupancy correlation in making its
sensing decisions across a wide frequency band. Through nu-
merical experiments, we showed that OLEC-based multiband
joint detector can significantly enhance the performance of
high data-rate CR networks. The extension of the proposed
OLEC-based multiband joint ED approach to multiple cooper-
ating CR terminals is currently under investigation as a means
to overcome the deleterious effects of multipath fading and
shadowing in wideband spectrum sensing.
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