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Abstract—We study the problem of direction of arrival
(DoA) estimation for cell-free massive MIMO (m-MIMO)
systems operating over extremely high frequency (EHF)
and terahertz (THF) bands, where the wireless channel
can effectively be modeled by a line-of-sight path. For this
model, a low-complexity deep neural network (DNN)-
based method is proposed to estimate the DoA of a radio
wave impinging on an access point (AP) equipped with
an antenna array. To train the DNN, a special feature
set is proposed obtained from the first superdiagonal
entries of the spatial correlation matrix. This selection
of features makes it possible to employ a DNN with only
a few low-dimensional layers, which considerably speeds
up training and processing. More importantly, it is shown
that the trained DNN is robust against quantization noise
in the array snapshot data. This property makes the
centralized implementation of the proposed DNN-based
method feasible, which is particularly well-suited for cell-
free m-MIMO. Through extensive simulations, the new
method is shown to achieve an estimation performance
that nearly matches or exceeds that of classical bechmark
methods, but with considerably reduced complexity.

Index Terms—DoA estimation, cell-free massive
MIMO, neural network, LoS communications.

I. INTRODUCTION

Network densification is a highly effective approach
to increase capacity, as needed to support high-data-
rate applications envisaged for 5G and beyond. An
emerging framework for achieving network densifi-
cation is provided by cell-free massive (m-MIMO),
wherein a large number of access points (APs) are
scattered over a wide area without partitioning the
network into bounded cells [1]–[3]. The APs are
connected via high-speed fronthaul links to a central
processing unit (CPU), which coordinates the various
signal processing tasks. Such a dense network offers
several advantages, e.g.: a high spectral efficiency, dis-
pensing with the need for frequent handover requests,
and taking advantage of large-scale fading diversity.

Besides network densification, data rates can be dra-
matically enhanced by transmitting over the extremely
high frequency (EHF) or terahertz frequency (THF)
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bands, where tremendous bandwidth is accessible.
However, the high-level of frequency-dependent path
loss over the EHF and THF bands, due to spreading,
scattering and molecular absorption [4], often leads
to very high attenuation in the received signal power,
especially for non-line-of-sight (NLoS) paths. For ex-
ample, the observed attenuation for the main NLoS
paths, compared to the LoS, can be as high as 20dB
in THF communications [4], [5]. This phenomenon
results in the dominance of the LoS over the NLoS
paths [5]–[10].

The use of the EHF and THF bands in cell-free m-
MIMO systems is highly auspicious [11], [12], espe-
cially in large public environments where the densifi-
cation of APs can be realized while maintaining strong
LoS radio links. To achieve a high spectral efficiency
in cell-free m-MIMO, demanding signal processing
tasks such as distributed beamforming, pilot assign-
ment, and power allocation, must be performed by
the APs and the CPU. These tasks require the sys-
tem to accurately estimate physical parameters of the
transmission channels between the system users and
the APs, in particular the directions of arrival (DoAs)
of the radio signals at the APs [3]. Furthermore, it
may be desirable to perform the DoA estimation at
the CPU to reduce the computational burden on the
APs or avoid quantization errors in the DOAs caused
by transmission over fronthaul links.

There is a growing trend to endow communication
systems with artificial intelligence (AI) by means of
deep neural network (DNN)-based approaches. The
chief reasons behind this tendency are twofold: i)
DNN architectures have offered a remarkable level
of accuracy in numerous applications such as image
classification, data analyses, speech recognition, etc.
[13], ii) a low-complexity processing is generally
attainable in the prediction (or estimation) phase once
the DNN has been properly trained.

There exist several works in the literature which
address the problem of DoA estimation via DNN-
based approaches for a general multi-source system
[14]–[17]. In [14], the authors design a framework



in which multiple parallel trained DNN classifiers are
first used to determine subregions of angular spectrum
over which DoAs of received signals lie. Once angular
subregions are found, received signals are prepro-
cessed and fed into DNNs, each trained exclusively for
a particular subregion, to estimate received DoAs. In
[15], the angular spectrum is estimated by means of a
convolutional DNN-based approach. Both approaches
require an extra post-processing stage, particularly
an interpolation module, to procure accurate results,
especially for off-grid DoAs. An DNN-based approach
is adopted in [16] where multiple parallel DNNs are
trained to estimate DoAs in a massive MIMO system.
This approach requires parallel maximum likelihood
modules to refine the coarse estimates obtained in
the prediction phase. In [17], a large complex DNN
is developed to estimate DoAs for a massive MIMO
system, but this approach requires a long training time.

The problem of DoA estimation in a cell-free m-
MIMO system is addressed in [3], where a discrete
Fourier transform (DFT)-based approach, implemented
in a distributed manner, is adopted. The method re-
quires a double search whose complexity is propor-
tional to the product of the number of array snapshots
and the size of the grid search. Moreover, in context of
cell-free m-MIMO, the classical subspace-based DoA
estimation methods such as multiple signal classifica-
tion (MUSIC) [18] and Root-MUSIC [19] impose high
computational complexity and generally suffer from a
limited array operational range [20], [21].

The limitations of the above approaches motivate
us to investigate the problem of DoA estimation for
a cell-free m-MIMO system operating over the EHF
and THF bands. Our aim is to conceive a DNN-based
DoA estimation method yielding high accuracy while
keeping the processing complexity low. Moreover,
the method must be robust against noises caused by
low-resolution quantizers to make it implementable
at the CPU. To this end, we herein take advantage
of a special feature set which is obtained from the
superdiagonal entries of the spatial correlation matrix.
This choice of features makes it possible to employ a
DNN with only a few low-dimensional layers, which
considerably speeds up training while ensuring high
level of accuracy in the DoA estimates.

Simulation results shown that the proposed DNN-
based method can achieve a DoA estimation perfor-
mance that exceeds or nearly matches that of con-
ventional benchmark approaches (i.e., MUSIC, root-
MUSIC and DFT-based method [3]), but with con-
siderably reduced processing complexity. The trained
DNN is also robust against quantization noise in
the array snapshot data, which allows the centralized
implementation of the proposed method at the CPU.

The rest of the paper is organized as follows: The

system model is introduced in Section II. The proposed
DNN-based method for DoA estimation in cell-free
m-MIMO, is presented in Section III. The simulation
methodology and results are demonstrated in Section
IV. A conclusion is drawn in Section V. music

II. SYSTEM MODEL

We consider a cell-free m-MIMO system comprised
of APs connected to a common CPU via fronthaul
links. The APs, equipped with multiple antennas, serve
single-antenna users distributed across a geographical
area. The system operates over EHF or THF bands
such that the propagation channel is accurately mod-
eled by an LoS path [5]–[10]. As in [3], [22], we
assume that the DoAs between the APs and the users
remain constant within a coherence time, which is long
enough to allow the use of orthogonal pilots for the
different users. This assumption is not restrictive since
DoAs typically change over a time interval whose
scale is similar to that of large-scale fading [3].

Due to the orthogonality of pilots and highly at-
tenuated NLoS paths, we focus our investigation on
the DoA estimation of the LoS between a particular
pair of user and AP during the uplink training phase.
Letting M denote the number of antennas at the AP,
the tth sample of the preprocessed1 signal vector at
the antenna array output can be expressed as [3], [5]

y[t] =
√
ρ α[t]a(ω) + v[t], (1)

where t is the snapshot index, ρ is the average signal-
to-noise ratio (SNR) at each individual antenna, α[t] ∈
C is the small-scale fading modeled as a circular
complex Gaussian random variable with zero-mean
and unit variance, a(ω) ∈ CM is the spatial signature
vector induced on the antenna array, and v[t] ∈ CM is
a spatially white circular complex Gaussian noise with
zero-mean vector and an identity covariance matrix.

In this work, we consider for simplicity a uniform
linear array (ULA); however, the extension of our
approach to the case of a uniform rectangular array
is possible. The spatial signature vector of the ULA
can be expressed as

a(ω) = [1, ejω, . . . , ej(M−1)ω]T , (2)

where ω is the spatial frequency defined as

ω = 2πη sin(θ), (3)

η is the array element separation (AES) normalized
to wavelength unit, and θ is the unknown DoA (ex-
pressed in degrees). The latter is assumed to lie in the
interval [−θAOR , θAOR ] which is referred to as the array
operational range (AOR).

1Preprocessing refers to baseband demodulation followed by
projection on user’s pilot at each antenna element.
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In this paper, we focus on the problem of DoA
estimation using a finite sequence of observed snap-
shots y[t] for t = 1, 2, . . . T , where T is the number
of snapshots. Specifically, we investigate the design
and training of a DNN engine that can accurately
estimate the unknown DoA for the above cell-free m-
MIMO system model. The trained DNN must exhibit
low processing complexity and a robust performance
against quantization noise to facilitate centralized im-
plementation.

III. PROPOSED NEURAL NETWORK-BASED
METHOD FOR DOA ESTIMATION

In this section, we first propose a new feature set for
DNN-based DoA estimation in cell-free m-MIMO. We
then introduce the architecture of the employed DNN.
Finally, we describe the training and online estimation
phases of the DNN.

A. Feature Extraction for DoA Estimation

Here, we propose a new way of feature extraction,
which stipulates what type of data must be fed to the
DNN used for DOA estimation. To obtain the proposed
features, we first estimate the spatial correlation matrix
of the array as

R̂ =
1

T

T∑
t=1

y[t]y[t]H ∈ CM×M . (4)

Then, for 1 ≤ m ≤ M − 1, let Sm denote the set of
entries on the mth superdiagonal of R̂, that is,

Sm = {r̂i,i+m|1 ≤ i ≤ M −m}. (5)

Next, to each element of Sm, we can associate an
angle ω̂i,i+m = arctan2(r̂i,i+m), interpreted as spatial
frequency, and form a corresponding set

Fm = {ω̂i,i+m|1 ≤ i ≤ M −m}. (6)

Different from other works in the literature (e.g.,
[14], [15]) which use R̂ or {Sm}Mm=1, we propose
to select F1 as the feature set. The rationale behind
this selection will be explained in the sequel.

For the LoS signal model in (1)-(2), the spatial
correlation matrix at the array output is given by

R = E{y[t]y[t]H} = ρa(ω)a(ω)H + IM , (7)

where the entries on the first superdiagonal takes the
special form

ri,i+1 = ρ exp(jω), 1 ≤ i ≤ M − 1, (8)

and therefore, arctan2(ri,i+1) = ω for al i in the
above range. Hence, it is clear that the set F1 contains
sufficient information for the estimation of the spatial
frequency ω when the noise is averaged out, which in
light of (4) amounts to using a sufficiently large value
of T . Furthermore, as will be demonstrated in Section
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Fig. 1: General Architecture of a DNN

IV, the feature set F1 makes it possible to employ a
DNN with only a few low-dimensional layers, which
considerably speeds up the training and processing
processes. The selection of F1 also allows to decrease
the computational complexity of the feature extraction
from an order of O(TM2) to O(TM) since not all
entries of R̂ are required.

B. Neural Network Architecture

Fig. 1 depicts the general architecture of a DNN
used in this work for scalar parameter estimation. The
DNN is composed of one input layer, L hidden layers
and one output layer, respectively indexed by ℓ = 0,
1 ≤ ℓ ≤ L and ℓ = L + 1. Layer 0 consists of input
data vector a0 ∈ Rq0 , while for 1 ≤ ℓ ≤ L + 1,
layer ℓ is comprised of qℓ neurons, with qL+1 = 1.
Specifically, for ℓ ≥ 1, layer ℓ takes aℓ−1 ∈ Rqℓ−1 as
its input and outputs the vector aℓ ∈ Rqℓ as

aℓ = fℓ(Wℓaℓ−1 + bℓ ), (9)

where Wℓ ∈ Rqℓ×qℓ−1 is the weighting matrix,
bℓ ∈ Rqℓ is the bias vector, and fℓ(·), which acts in
a component-wise manner, is the non-linear activation
function. In the sequel, we let aL+1 = aL+1 denote
the scalar output of the DNN.

In our proposed method, we use the angles of
the superdiagonal of R̂ as input to the DNN. That
is, the elements of F1 are vectorized into a0 =
[ω̂1,2, . . . , ω̂M−1,M ]T ∈ RM−1. Since the variable
ω̂i,i+1 are mutually independent for large T , the
vectorization can be done either in-order or out-of-
order. For each such input vector, the trained DNN
produces a spatial frequency estimate at its output, i.e.
aL+1 = ω̂.

C. Training Phase

We assume a dataset consisting of Ns pairs of
ground-truth and training samples, indexed by super-
script (j) where 1 ≤ j ≤ Ns. The ground-truth sam-
ples are spatial frequencies corresponding to selected
DoAs while the training samples are the superdiagonal
entries in the set F1. Specifically, for a fixed value of
θAOR and the jth pair of samples, a DoA is chosen from
a discretized AOR, i.e. θ(j) ∈ [−θAOR , θAOR ], and the
corresponding spatial frequency ω(j) calculated from
(3) is used as the ground truth. For the corresponding
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training sample, we generate T received signal vector
y(j)[t]’s by using ω(j) (see (1)). Then, we compute
the spatial correlation matrix R̂(j) from the sequence
y(j)[t], t = 1, 2, . . . T (see (4)). Next, we form the
set F (j)

1 and use it as the jth training sample (see
(6)). Finally, we collect all ground-truth and training
samples into a dataset

D =
{(

F (j)
1 ;ω(j)

)}Ns

j=1
. (10)

For training, the elements of dataset (10) are first
divided evenly into B subsets or batches of size Ns/B,
assumed to be integer. Then, each training sample of
a batch is fed as input to the DNN in Fig. 1 (forward
propagation) to produce a corresponding output aL+1.
After one batch is passed through the DNN, the values
of {Wℓ,bℓ}L+1

ℓ=1 are refined (back propagation) by
applying steepest descent to the mean square error
(MSE) loss function

MSEω =
1

Ns/B

∑
j

(ω(j) − a
(j)
L+1)

2, (11)

where the summation is taken over the index range of
the batch. Once all the B batches have been processed
and the DNN sees the whole training dataset, referred
to as one epoch, the process is repeated.

D. Online Estimation Phase

Once the DNN is trained, it is ready to be used as
a DoA estimator for received signals in a cell-free m-
MIMO system. Specifically, the correlation matrix R̂
is first estimated by using T snapshots of a received
signal y[t] and F1 is then calculated according to (6).
Next, the DNN is fed with entries of F1 to output the
estimation of the spatial frequency as ω̂. Finally, the
estimation of DoA is obtained as

θ̂ = arcsin (ω̂/2πη) . (12)

IV. SIMULATION STUDY

In this section, we first present our methodology
for training the proposed DNN and evaluating its
performance. We then provide justification for choos-
ing the feature set F1 and investigate the impact
of AES and AOR upon the training behavior based
on numerical analysis. Finally, we present simulation
results to evaluate the performance of the proposed
DNN-based DoA estimation method.
A. Methodology

We consider the signal model in (1)-(3) along
with the feature extraction procedure described in
Subsection III-A to generate data for training and
performance evaluation of the proposed DNN-based
and other benchmark DoA estimation methods. The
default values of the system model parameters are
summarized in Table I. For the proposed DNN in
Subsection III-B, we choose 2 hidden layers, where the

TABLE I: System parameters

Parameter Symbol Range / Value(s)

Number of antennas M {4, 8, 16}
Number of snapshots T [10, 50]
Endpoint of the AOR θAOR {60◦, 90◦}

AES η {0.33, 0.50, 0.67}
SNR ρ [0, 20]dB

TABLE II: Training parameters and specifications

Parameter Value / Type

Number of batches 64
Learning rate 10−6

Number of epochs 1000
Training–validation split 80%–20%

Weights initializer He/Glorot uniform
Optimizer Adam

first and second hidden layers have 8 and 4 neurons,
respectively. The rectified linear unit (ReLU) and the
identity functions are employed as activation functions
for hidden and output layers, respectively. The DNN is
built by using the libraries TensorFlow and Keras
in a Functional API fashion [23].

To train the DNN, we generate data by following
the general procedure described in Subsection III-C.
Specifically, the AOR [−θAOR , θAOR ] is discretized in
steps of 1◦ and each DoA is selected R times. The
value of R is chosen as 100 unless otherwise indicated.
Hence, the number of samples in the dataset is equal
to Ns = R(2θAOR + 1), while B = 64 is set as the
number of batches2. For each θ(j) , (j = 1, . . . , Ns),
T = 50 independent array snapshot vectors are gener-
ated based on (1) with SNR set to ρ = 10 dB. These
vectors are used to calculate a sample covariance
matrix R̂(j) from which F (j)

1 is obtained. For purpose
of comparison (as explained below), we also generate
the larger dataset

D′ =
{
(S(j)

1 ,S(j)
2 , . . . ,S(j)

M−1;ω
(j))

}Ns

j=1
, (13)

whose training samples are obtained by considering
all superdiagonal entries of R̂(j). Unless otherwise
specified, the DNN is trained by using the parameters
and specifications given in Table II. In particular, the
Adam algorithm is used as optimizer with He-Glorot
uniform weight initialization.

We evaluate the performance of the proposed DNN-
based DOA estimation method against that of the
following methods:

• Subspace-based MUSIC algorithm [18];
• Subspace-based Root-MUSIC algorithm [19];
• DFT-based approach from [3].

2The size of each batch is ⌊Ns/64⌋, except for the last batch
with size Ns mod64.
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Fig. 2: ω̂1,2 versus DoA for different values of η (θAOR = 90◦, T = 50, M = 16, and ρ = 10dB).

TABLE III: Training and validation RMSEω of the
DNN trained with datasets D and D′

Training
RMSEω

Validation
RMSEω

Training Time
(min.)

M D D′ D D′ D D′

4 0.164 0.525 0.169 1.590 14.23 14.32
8 0.112 0.747 0.166 2.154 15.03 16.10
16 0.091 0.717 0.129 2.243 14.75 17.60

As it is well known, MUSIC (with fine grid search) and
root-MUSIC achieve a RMSE performance compara-
ble to the Cramer-Rao lower bound [18], [19]. Hence
they are used here as fundamental benchmarks against
which the performance of the proposed DNN-based
method can be assessed. The performance metrics for
the trained DNN include the root mean square error
on the DOA estimates, denoted as RMSEθ and the
processing time. The number of runs for the evaluation
of RMSEθ is set to 5000. Simulations are conducted
on a desktop computer with an Intel®core™-i7 CPU
(4×3.6-GHz cores).

B. Justification of Feature Set

We first provide justification for our choice of F1

as input feature set to the DNN. To this end, we
conduct an experiment in which the considered DNN
is trained separately with the proposed set D (10) and
with the extended data set D′ (13). In the latter case,
the DNN is fed with the real and imaginary parts of the
training samples in D′. The dataset D′ has M times
more (real) elements per training sample than D and
it is commonly used in the literature [14], [15]. The
training and validation RMSEω of the DNN for the
two different data sets, along with the training time,
are listed in Table III for different values of M .3 It
can be seen that the DNN trained with the proposed
data set D, as opposed to D′, always yields the lowest
average training and validation RMSEω . Besides, as
M grows to 16, the average training time with the
extended data set D′ is increased by almost 20%.

3The values of RMSEω are obtained by taking an average over
100 different initial values of the weighting matrices Wℓ and bias
vectors bℓ. In each case, the epoch whose validation RMSEω is
minimum is selected for the averaging.

C. Impact of AOR and AES on Training
Next, we investigate the impact of the AOR and

AES upon the training behavior. Indeed, we have
observed that the training performance degrades as the
DoA θ and/or sensor separation η increase beyond a
certain limit. To get more insight, we plot a single
realization of the spatial frequency estimate ω̂1,2 in
(6) versus the true DoA θ ∈ [−90◦, 90◦] for different
values of η in Fig. 2. For small values of η (Fig.
2a), the training feature ω̂1,2 generally increases with
the DoA, except for the small fluctuations due to the
measurement noise in matrix R̂. For larger values of
η however (Fig 2b and 2c), we note the presence of
phase jumps in the training feature as |θ| approaches
the limiting value θlim = arcsin( 1

2η ). This effect is
due to the measurement noise which changes the sign
of ℑ{r̂1,2} when ℑ{r̂1,2} ≈ 0 and ℜ{r̂1,2} < 0;4 in
turn, this introduces a factor of ±π when computing
ω̂1,2 = arctan

(
ℑ{r̂1,2}
ℜ{r̂1,2}

)
. These phase jumps nega-

tively impact the DNN training, and hence, its online
DoA estimation performance.

To cope with this issue, one might attempt to unwrap
the spatial frequencies and feed the DNN with the new
resulting dataset. This approach, which is possible here
because of the particular scheme used to generate the
training data, would however introduce uncertainties in
the feature extraction at the prediction phase. Indeed,
since some values of ω̂1,2 are repeated over the differ-
ent DoA intervals (as shown by crosses in Fig. 2c), it
is not feasible in practice to perform phase unwrapping
before passing spatial frequencies to the trained DNN.

As explained above, the useful range for the AOR
and AES, i.e. over which no phase jumps are likely to
occur, are intimately related. In particular, the value of
θAOR should be less than θlim, as can be seen from Figs.
2b and 2c. The existence of such phase jumps further
explains why only the first superdiagonal is chosen and
other superdiagonals are ignored for the feature set.
Specifically, the entries of Fm are rough estimations
for the mth multiple of ω. Hence, when m ≥ 2,
the range of |ω̂i,i+m| is m times larger than that of

4ℜ{z} and ℑ{z} denote the real and imaginary parts of the
complex random variable z, respectively.
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Fig. 3: Average processing complexity of different
methods versus number of snapshots T (θ = 60◦,
M = 16, η = 0.5, and ρ = 10dB).
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Fig. 4: Average RMSEθ of different methods versus
number of snapshots T (M = 8, θ = 15.5◦, η = 0.5,
and ρ = 10dB).

|ω̂i,i+1|, which in turn leads to the onset of phase
jumps at a smaller value of |θlim|, i.e., arcsin( 1

2mη ).
Based on the above discussion, we choose θAOR = 60◦

and η = 0.5 for DNN training in the rest of the paper;
these values are similar to those used in related works,
e.g., [14], [15].

D. DoA Estimation Results

Herein, we compare the performance of the pro-
posed DNN-based DoA estimation method with that
of the DFT-based method recently proposed in [3] for
cell-free m-MIMO systems, and the subspace-based
MUSIC and root-MUSIC algorithms. Moreover, the
performance of the proposed method in the presence of
quantization noise caused by low-resolution quantizers
at the APs, will be compared for the centralized and
decentralized implementations.

First, we compare the processing complexity of
different methods in Fig. 3, where two step sizes, i.e.,
∆ = 1◦ and 0.1◦ are considered for the grid search of
MUSIC. We first note that the processing complexity
of the proposed DNN-based method is remarkably
less than that of all other methods. Specifically, the
processing time is about 0.07ms for the former, 4ms
and 30ms for MUSIC with ∆ = 1◦, 0.1◦, respectively,
1.3ms for Root-MUSIC, and 20 to 70ms for the DFT-
based method. This observation confirms that the low-
complexity processing is the dominant feature of the

0 5 10 15 20
10

-2

10
-1

10
0

Fig. 5: Average RMSEθ of proposed DNN-based
method versus SNR (θ = 15.5◦, η = 0.5, and T = 30).

TABLE IV: Total number of DNN model parameters
for different methods

Method
Total no. of

hidden layers
Total no. of
parameters

Proposed 2 105
[15] 4 1801
[14] 13 25482

proposed method. In Table IV, we also compare the
total number of model parameters of the proposed
method to that of other recent DNN-based methods
for DoA estimation. It can be seen that compared to
the methods in [14] and [15], the proposed method
requires much fewer parameters.

Second, we compare the RMSEθ performance of the
DoA estimation methods. To this end, Fig. 4 depicts
the RMSEθ of different approaches versus the number
of snapshots T for θ = 15.5◦, which is not part
of the training dataset. From the figure, the DFT-
based method does not perform well compared to
other methods while MUSIC with ∆ = 1◦ always
estimates an angle next to the true DoA value. The
proposed DNN-based method outperforms the MUSIC
algorithm with ∆ = 1◦ for different number of
snapshots. MUSIC with ∆ = 0.1◦ and Root-MUSIC
slightly outperform the proposed DNN-based method
(up to 0.06◦ in terms of RMSEθ), but this is achieved
by incurring significant processing costs (see Fig. 3).

Third, we present the RMSEθ of the proposed DoA
estimation method versus the SNR ρ in Fig. 5. Note
that the proposed DNN has only seen the value of ρ =
10dB during the training phase. As observed from the
figure, the RMSEθ decreases in nearly linear fashion
as ρ increases, suggesting that the performance of the
proposed DNN is robust against unseen values of SNR.

Finally, we compare the performance of the pro-
posed method when it is implemented in centralized
and decentralized manners for DoA estimation in a
cell-free m-MIMO system. Here, following [24], we
assume that a low-resolution uniform quantizer with
QL levels is applied to the received signal y[t] in
(1) and the estimated DoA θ̂ in (12) for the central-
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Fig. 6: Average RMSEθ versus number of snapshots
T for centralized and decentralized implementations
(η = 0.5 and ρ = 10dB).

ized and decentralized implementations, respectively.
Fig. 6 displays the RMSEθ performance of the pro-
posed method for the centralized and decentralized
implementations, where the RMSE is averaged over
the range [−60◦, 60◦]. As seen from the figure, the
centralized implementation outperforms considerably
the decentralized one for different number of antennas
and QL = 4 and 16. This observation suggests that
the centralized implementation of the proposed method
is more efficient when low-resolution quantizers are
available.

V. CONCLUSION

We studied the problem of DoA estimation for cell-
free m-MIMO systems operating over EHF and THF
bands and proposed a low-complexity DNN-based
method. To train the DNN, a special feature set was
prescribed which makes it possible to employ a DNN
with only a few low-dimensional layers. It was shown
that the trained DNN is robust against quantization
noise which makes the centralized implementation
of the proposed method feasible. Through extensive
simulations, the new method was shown to achieve an
estimation performance that nearly matches or exceeds
that of bechmark methods, but with considerably re-
duced complexity.
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