ON THE FIXED-POINT IMPLEMENTATION OF A SUBBAND ACOUSTIC
ECHO CANCELER BASED ON A MODIFIED FAP ALGORITHM

Mohamed Ghanassi and Benoit Champagne

INRS-Télécommunications, Université du Québec
16 place du Commerce, Verdun, Québec, Canada, H3E 1H6

ABSTRACT

We investigate quantization effects in the fixed-point implemen-
tation of a subband AEC system based on a FAP-RLS algorithm.
The latter uses a sliding window RLS (instead of FRLS) to com-
pute the normalized residual echo vector. Subband decomposition
is performed with modified uniform DFT filter banks, realized ef-
ficiently via the weighted overlap-add (WOA) technique for flexi-
bility in oversampling. We characterize the main sources of errors
in both the FAP-RLS and the DFT filter banks, and propose sim-
ple and effective solutions for stable operation of the subband AEC
system. Our findings are supported experimentally.

1. INTRODUCTION

Acoustic echo cancellation (AEC) via subband adaptive filtering
(combined with voice activity detection) is one of the most effec-
tive approach to the control of acoustic echos generated by hands-
free terminals. In this technique, echo estimation and cancellation
is realized via a set of parallel, independent adaptive filters op-
erating on subband versions of the loudspeaker and microphone
signals. Significant computational savings result from operating
the subband adaptive filters at a reduced sampling rate.

Major sources of problem in designing an adaptive filter for
AEC are the long duration of the echo path and the non-stationary
nature of the excitation signal. As aresult, instantaneous stochastic
gradient algorithms, such as the NLMS, exhibit slow convergence.
In recent years, several new adaptive filtering algorithms have thus
been proposed for AEC applications, with the aim of achieving
faster and signal-independent convergence while preserving the
low complexity of NLMS. Among these, the fast affine projection
(FAP) [1] is now receiving considerable attention.

In this paper, we investigate the quantization effects in the
fixed-point implementation of a subband AEC system based on
a FAP-RLS algorithm. The latter uses a sliding window RLS (in-
stead of FRLS) to compute the normalized residual echo vector
[2]. Subband decomposition is performed with oversampled, mod-
ified uniform DFT filter banks, realized efficiently via the weighted
overlap-add (WOA) technique [3]. We characterize the main sour-
ces of errors in both the FAP-RLS and the DFT filter banks, and
propose simple and effective solutions for stable operation of the
subband AEC system. Our findings are supported experimentally.

2. BACKGROUND
2.1. Algorithm overview

In subband AEC, the loudspeaker signal = (k) and the microphone
signal y(k) are split into K adjacent subbands by analysis filter
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banks. The subband signals at the filter outputs are downsampled
by D, resulting in z;(m) and y;(m), where i = 0,..., K —1is
the subband index and m is the time index at the reduced rate. In
each subband, an adaptive filter with input z; (m) is used to cancel
the echo component in y;(m), yielding a subband residual echo
e;(m). Finally, the subband residuals are upsampled by D and
combined into a single fullband residual e(k) by a synthesis filter
bank. As a result of subband downsampling, important computa-
tional savings of the order of D?/K may be achieved. To avoid
decimation aliasing in the subbands, oversampling (i.e. D < K)
is now commonly used in practical implementations.

The subband AEC system under consideration here is made up
of subband transversal filters adapted with separate FAP-RLS al-
gorithms; subband analysis/synthesis is achieved via oversampled
modified uniform DFT banks. Additional details follow.

A) FAP-RLS algorithm:

FAP is a kind of fast version of the affine projection algorithm
(APA) [4]. Three crucial steps are invoked in its derivation from
APA, namely [1]: (1) fast (approximate) update of the residual
echo vector; (2) use, and fast adaptation, of an alternative filter
weight vector; and (3) use of FRLS for the implicit computation
of the inverse data covariance matrix of size M x M needed in
APA, where M is the projection order. The complexity of FAP
is roughly 2N + 20M. When using FAP in the AEC context,
significant improvements in convergence speed are observed, as
compared to NLMS, with only small values of M, i.e. M < N.

The main disadvantage of FAP is its use of FRLS in step (3).
Despite the low complexity of 100/ for this step, as compared to
O(M?) for a standard RLS, FRLS is quite sensitive to errors in-
troduced by finite arithmetic, which rapidly lead to its instability.
Another problem is the implementation overhead generally asso-
ciated to FRLS type algorithms. Various derivatives of FAP have
been proposed to further reduce its complexity and/or improve its
numerical behavior. Our work here focus on a modified FAP al-
gorithm, called FAP-RLS [2]. The latter is similar to FAP in its
steps (1) and (2) above, but uses a standard sliding-window RLS
in step (3). Since small values of M are used in subband AEC
applications, typically < 5, RLS is preferred over FRLS because
of its simplicity and more robust numerical behavior.

The complex version of the FAP-RLS algorithm ! is sum-
marized in Table 1, where fullband notation is used to simplify
the presentation. Here, z(k) denotes the input signal, y(k) is
the desired signal, x(k) = [z(k),...,z(k — N + 1], s(k) =
[z(k),...,z(k — M + 1)]*, R(k) isa M x M sample covariance
matrix, r(k) is a correlation vector of size M —1, e(k) is the resid-
ual echo, (k) is the normalized residual echo vector, w(k) is the

LFor the real version, simply drop the complex conjugate symbol* and
replace hermitian transpose’ with plain transpose *.



a(k) =R (k- 1)s"(k)

a(k) =[1+s'(k)a(k)] ™"

Q'(k) =R7'(k— 1) — a(k)a(k)a" (k)

b(k) = Q '(k)s*(k— N)

B(k) =[1—s'(k - N)b(k)]*

R7'(k) = Q7' (k) + B(k)b(k)b" (k)

e(k) = e*(k)p(k), where p(k) = 1st column of R~ (k)
r(k)=r(k—1)+z(k)s"(k—1) —z(k— N)s"(k— N —1)
e(k) = y(k) — w"(k — 1)x(k) — pmp" (k — 1)r(k)
n(k) = e(k) + [0,7(k — 1)°]*

W(k) = W(k = 1) + px(N = (M = 1))na—1(k)

Table 1: FAP-RLS algorithm

alternative weight vector and p is a relaxation factor close to 1.
For initialization, we use P(0) = I/ where ¢ is a regularization
parameter, r(0) = 0, n(0) = 0, and w(0) = 0. The complexity
of FAP-RLS is about 2N +3M? + 6.5 M complex multiplies plus
2 complex divisions per iteration.

B) Uniform DFT filter banks:

Subband analysis/synthesis is achieved via modified uniform DFT
filter banks designed according to [3]. In the analysis bank, the in-
put signal z(k) is fed to a bank of K demodulators, whose outputs
are low-pass filtered by h(k) (ideal cut-off at =/K) and down-
sampled by D. The digital spectrum [0, 2] is thus divided into
K uniform subbands of width Aw = 27/ K and center frequency
iAw, i = 0,..., K — 1. In the synthesis bank, the input subband
signals are upsampled by D, low-pass filtered by g(k), modulated
and summed. Aliasing distorsion is made acceptably small by us-
ing oversampling. Phase distorsion is eliminated by proper choice
of the modulating functions and use of g(k) = h(L — 1 — k).
Finally, h(k) is obtained as an FIR filter of length L = n, K by
interpolation of a QMF to minimize amplitude distorsion.

An efficient weighted-overlap-add (WOA) approach is used
for the implementation of the modified uniform DFT filter banks.
This approach allows the use of arbitrary (integer) values of down-
sampling D, for optimum performance of the subband AEC sys-
tem, i.e. trade-off between complexity reduction and subband alias-
ing. The main steps in the WOA implementation of the analysis
bank for an arbitrary input signal x(k) are summarized below: at
discrete-time m (reduced rate)

1. Compute . (r) = h(r)z(mD —r),r =0,1,...,L — 1.

2. Partition {y.., (r)} -2, into n, = L/K blocks of K samples.

3. Compute &, (t),t = 0,1,..., K—1, by adding the correspond-
ing samples of each block.

4. Compute z,, (t) = Em((t—mD) mod K),t =0,1,..., K—1

5. Compute z;(m), s = 0,1,..., K — 1, as the K-point FFT of
{en (O}

The corresponding steps in the WOA implementation of the syn-

thesis bank are the dual of the above ones. The output is usually

scaled by D to achieve unit gain of the overall system.

2.2. Scopeof study

A) Objectives:
In the past, we have extensively studied the performance of
the above subband FAP-RLS based AEC system in floating-point

arithmetic, using an off-line C-language implementation on a com-
puter worstation and a real-time assembler implementation on a
TMS320C40 DSP from TI. Compared to a fullband NLMS-based
AEC system, the subband FAP-RLS achieves much faster conver-
gence at a fraction of the cost.

The main objective of this work is to develop a better under-
standing of quantization effects on the behavior of the subband
FAP-RLS in a fixed-point implementation. This is judged impor-
tant for minimizing implementation costs and avoiding undesir-
able numerical behaviors of the algorithm in applications. Both
issues of numerical stability and precision are addressed.

B) Methodology:

We assume a b-bit fixed-point fractional representation extending
from —1to 1—A, where A = 2~®~Y_ Two’s complement is used
for representing negative numbers. The product x of two numbers
must be quantized by either truncation or rounding: the error is de-
noted g = Q(z)—z, where Q(.) is the quantization operator. Ex-
perimental results not reported here show a much faster error accu-
mulation with truncation. Accordingly, rounding is assumed in our
analysis and used in the DSP experiments. Quantization errors are
modeled as independent random variables uniformly distributed
within A /2; the corresponding variance is &, = A®/12.

Overflow may occur as the result of addition or division. In
most commercial fixed-point DSPs, overflow is minimized by the
use of accumulators with additional guard bits to the left of the
MSB. Scaling (i.e. shift) of a quantity may still be necessary to
avoid overflow during memory transfer. Due to lack of space, few
details are provided on scaling, although it remains an essential
aspect for optimal use of fixed-point resources.

The fixed-point behavior of the subband FAP-RLS is investi-
gated analytically and by computer simulations. To this end, we
have developed several programs that enable us to control the num-
ber of bits used for the representation of numbers, as well as other
related aspects. The 16-bit representation is particularly important
for applications. In this particular case, we have developed a soft-
ware application written in C that emulates the functionality of the
TMS320C54 DSP from Texas Instruments [5].

3. FIXED-POINT IMPLEMNTATION OF FAP-RLS

In this section, we study the quantization effects introduced by
fixed-point arithmetic on the behavior of the FAP-RLS. To sim-
plify the presentation, fullband notation is assumed. However, in
all experiments, the algorithm parameters are set to values that are
representative of a subband AEC application. In particular, the fil-
ter length is set to N = 128 and only small values of M are used.
The length of the acoustic echo path is also set to 128 and Gaussian
white noise is added to the echo when appropriate.

3.1. Update of inverse covariance matrix R~ (k)

We first study the propagation of a single quantization error in the
computation of R~ (k) in Table 1. For simplicity, first consider
the case M = 1. Assume that at time k,, a quantization error
q(ko) is introduced in R™*(k,). Using the equations in Table 1,
one may show that the resulting error propagated by the algorithm
attime k > k, is q(k) = G(k)q(ko) where
: 1 2 N
ai= J] [L+R7 (=D -l-MP)]  ©
i=ko+1

The behavior of the gain G(k) may be investigated numerically.
In the case of a stationary Gaussian white noise process x(k),
the results show a stationary behavior of G(k), i.e. no decay of
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Figure 1: Error accumulation in [R™*(k)]1; with 16-bit and 32/16
bit implementations

the quantization error with time. In practice, this behavior favors
the accumulation of errors. In the case of a non-stationary signal,
G (k) is seen to increase at the beginning of an interval of small
signal amplitude. Similar conclusions apply to the case M > 1.

Next, the accumulation effect of quantization errors on R™* (k)
is investigated via simulations. A stationary Gaussian white noise
with variance o2 = 0.025 is used as input, M = 4 and § = 12072,
Fig. 1 (curve labeled 16 bits) shows the time evolution of the
normalized power of the quantization error g(k) = [R;*(k) —
R™"(k)]11, where R * (k) is computed in fixed-point with 16-bit
precision and R~ (k) is computed in floating-point with 64-bit
precision. It can be seen that the error increases with time. In other
experiments with non-stationary signals, a net increase in the error
power is observed at the beginning of an interval of small signal
amplitude. In general, we observe a divergence of the FAP-RLS al-
gorithm when the error level in Fig. 1 reaches about -10dB. Based
on such results, we conclude that 16-bit precision is not sufficient
for the computation of R™" (k).

To extend the stable life of FAP-RLS, we increase the num-
ber of bits used in the computation of R~ (k). Specifically, all
the variables entering this computation are represented with 32
bits (i.e. two 16-bit words), except for 1 + s(k)a(k) and 1 —
s'(k — N)b(k) in Table 1, which are represented with 16 bits (to
avoid costly 32-bit divisions). The evolution of the normalized er-
ror power is shown in Fig.1 (curve labeled 32/16). The level of
error is now much lower than in the previous case; but the com-
putation of R (k) requires about 2.5 more cpu cycles. For small
M, this is quite acceptable.

3.2. Updateof correlation vector r(k)

Another potential source of error accumulation in FAP algorithms
is in the computation of the correlation vector r(k) in Table 1. To
avoid such accumulation, r(k) should be computed as follows

r(k) =r(k — 1) + Qz(k)s(k)] — Qz(k — N)s(k — N)] (2)

where Q(.) denotes quantization by rounding. This approach in-
troduces a small quantization error, but no accumulation of the
latter, as verified experimentally.

3.3. Filtering and adaptation

The computation of e(k) and w(k) in Table 1 is similar in nature to
the NLMS algorithm, while the computation of n(k) does not per-
mit error accumulation. However, these operations use R™* (k);
We have verified that accumulation errors in this quantity may lead
to instability of the FAP-RLS algorithm.

To investigate this behavior of the FAP-RLS, we have used
a CSS as input signal z(k). With 16-bit precision, we observe
important instabilities of FAP-RLS; these are the result of error
accumulation in R™*(k), and occur principally during silence pe-
riods. Reinitialization (see below) is not always effective to over-
come this problem. However, when the FAP-RLS is implemented
in 16-bit and the computation of R™* (k) in 32/16-bit as described
above, a robust performance is observed and the algorithm remains
operational over extremely long periods of time.

To avoid potential problems at the beginning of a silence pe-
riod in the case of speech signals, we have implemented and tested
a reinitialization mechanism in which R™" (k) is reset to 1/¢ after
detection of a silence period (i.e. signal power below predefined
threshold) of duration IV samples. In this case, previous signal
samples z(k — i), ¢ = 0,..., N — 1, and vectors n(k) and r(k)
are also reset to zero. With this mechanism, instability were never
observed in our experiments with the 32/16-bit implementation.
This approach is simple, does not require significant extra compu-
tations, and has no effects on the observed convergence behavior
of the FAP-RLS.

3.4. Algorithm precision

We finally investigate the effects of the number b of representation
bits on the transient and steady-state > behaviors of the algorithm.
In the experiments, the background noise power is set to zero. Re-
sults (not shown due to lack of space) indicate that the quantiza-
tion errors have no effects on the initial convergence speed. In
the steady-state regime, a decrease in the residual error level of
roughly 7dB to 9dB per additional bit is observed. With b = 16
bits, the residual error level would remain below that of the back-
ground noise usually present in applications.

4. FIXED-POINT WOA IMPLEMENTATION

Since, the WOA technique makes use of the DFT, we first investi-
gate and compare the effects of quantization on a direct computa-
tion of the DFT and on the FFT algorithm. Quantization effects in
the analysis steps and synthesis steps of the WOA method are then
studied separately. Since all the operations involved are stable,
only the precision aspect is considered.

4.1. DFT versusFFT?

The K-point DFT of a sequence z(k), k = 0,.., K — 1 is de-
fined by X(n) = 37— 2(k)WiF, n = 0,.., K — 1, where

Wi = e~ 727/ % _In practice, instead of using the above definition
(i.e. direct method), the DFT is evaluated via the FFT algorithm.
However, sor small values of K, the computational complexity of
the FFT does not largely exceed that of the direct method. Thus,
a study of quantization effects on both approaches deserves to be
done.

To evaluate the signal to quantization noise ratio (SQNR), we
assume a statistical model of the quantization error as described
previously. Quantization of a complex number introduces an error
q = q» + jg; with variance 2X%. For simplicity, the signal = (k)
(either real or complex) is modeled as a white noise sequence with
variance 2. We assume that an error g, of variance X2 has been
introduced in the quantization of z(k). We also assume that the
fixed-point DSP under consideration has at least log, K guard bits
beyond the MSB in its accumulators, so that scaling is only neces-
sary when the final result is being transferred to memory. To avoid
overflow during the transfer, the result of the computation is in

2Before error accumulation in R~ (k) becomes important.



effect scaled down (shifted towards LSB) by a factor 1/ K (since
X ()] < 3275 (k)| < K).

For the direct method, a straightforward calculation of the SQNR

yields the following result:

SQNR ~ o2 /(2KS? + £2) 3)
For the FFT, a more elaborate calculation, involving a recursion
over the butterfly index, yields

SQNR ~ 02 /(4KS? + £2) (4)
According to (3)-(4), the direct method presents a small advantage
of at most 3dB with respect to the FFT. As an example, for a real
process z (k) with o2 = 0.1, X, = &, K = 16 and b = 16 bits,
the computed SQNR is about 76dB for the direct method and 73dB
for the FFT. These figures perfectly match the values measured
experimentally with the TMS320C54 simulator.

The small loss in SQNR with FFT is compensated by its faster
operation: for K = 16, the FFT is 1.6 times faster than the direct
method for real data and 3.4 times for complex data. Based on
these observations, FFT remains advantageous in our application.

4.2. Analysisbank

We next study quantization effects in the analysis steps of the
WOA implementation. The signal z(k) is modeled as a real, white
noise sequence with variance o2. We assume that quantization er-
rors g (k) and g, (k) are present in z(k) and the low-pass filter
h(k) (also real), with variance 3 = %2 = X2, Considering the
introduction of quantization errors at the various steps in the anal-
ysis portion of the WOA method, the propagation of these errors in
subsequent steps, and using results obtained in the above study of
the FFT algorithm, one may show that the SQNR in each branch
x; (m) at the output of the analysis bank is approximately given by

SQNR ~ ||n|’c2/[(L + 4K*)=?] (5)

where h = [h(0), h(1), ..., (L — 1)]* is a vector containing the
coefficients of the analysis prototype filter. The above formula is

valid provided ||h||>/L < 1and 3" =" h(t+sK)? ~ ny||/h||*/L.

s=0
Since |h(k)| < 1 and L is usually of the order of 10* of more,
these two conditions are usually satisfied.

As an example, consider a real white noise process z(k), with
variance o2 = 0.1, going through the analysis bank in Design
Example 2 in [3], for which K = 16, D = 12 and L = 128.
In this case, the above formula yields an SQNR of about 60dB.
This result is in perfect agreement with fixed-point experiments on
the TMS320C54 simulator. Such a value of SQNR is well below
the background noise level in typical subband AEC applications.
Accordingly, we conclude that quantization errors in the analysis
banks do not represent a significant impairment.

4.3. Synthesisbank

Here, the input is a set of subband signals, say {z;(m)}, obtained
by passing a real signal «(k) with variance o2 through the WOA
implemented analysis bank. As a result, the quantization error in
x;(m) has variance £3. = (4 + L/K?)¥?. Although the syn-
thesis uses inverse FFT instead of FFT, the variance formulae ob-
tained for FFT may be easily modified. Following a similar ap-
proach as the one taken in Section 4.2, the SQNR at the output of
the synthesis bank, denoted Z (k) is obtained as

SQNR ~ Ko’ /[D||h]* (L + 4K°)%] (6)

For the same example as in Section 4.2, (6) gives an SQNR
of about 61dB, in agreement with fixed-point experiments. For
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Figure 2: Short-term power of residual echo in fixed-point imple-
mentation of subband FAP-RLS.

this example, we find 2. ~ 4.5%7 after the analysis and £3 ~
1000%? after the synthesis. Thus, quantization errors introduced
in the synthesis bank are much more important than those intro-
duced in the analysis bank. We also find that the reconstruction
error at the output of the synthesis bank is about -40dB, as a result
of non-ideal selective property of the prototype filter h(k). Our
main conclusion here is that in a 16-bit fixed-point WOA imple-
mentation of the uniform DFT filter banks with practical values
of L, quantization errors are usually small compared to the recon-
struction error and may be neglected.

5. EVALUATION OF COMPLETE ALGORITHM

Finally, we study the behavior of the complete subband FAP-RLS
algorithm when implemented in fixed-point.

The parameters of the filter banks are chosen as follows: K =
16, D = 12, L = 128, h(k) as in Design Example 2 in [3]. For
the subband FAP-RLS algorithms, we use N = 1000/12 = 83
and M = 4 in all subbands (the values of  and ¢ differ slightly).
All the algorithms are implemented in 16-bit fixed-point using the
TMS320C54 simulator. The 32/16-bit technique is used for the
computation of R~ (k). For the evaluation, a CSS sequence sam-
pled at F; = 8kHz is used as the input z(k) (loudspeaker). The
microphone signal y(k) is obtained by convolving z(k) with a
room response, whose polarity is reversed every 25 seconds to sim-
ulate time-varying conditions; background noise at -30dB is added
to the result. The short-term power of the (fullband) residual echo
is shown in Fig. 2. Not that reinitialization has not been used here,
although it may be included in practice for safer operation.
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