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ABSTRACT

The major drawback of most noise reduction methods
is what is known as musical noise. To cope with this
problem, the masking properties of the human ear were
used in the spectral subtraction methods. However, no
similar approach is available for the signal subspace
based methods. In this paper we present a relationship
between the signal subspace domain and the frequency
domain which provides a way to calculate a perceptu-
ally based upper bound for the residual noise. This
bound, when used in the signal subspace approach,
yields an improved result where the residual noise is
much less annoying than the usual musical noise.

1. INTRODUCTION

Most noise reduction methods for speech enhancement
suffer from an annoying residual noise known as musical
noise. To reduce the effect of this drawback, a human
hearing model has been used (e.g [1][2][3]). This model
was first introduced and is widely used in audio coding
[4]. It is based on the fact that the human auditory
system is able to tolerate additive noise as long as it
is below some masking threshold. Methods to calculate
this threshold are developed in the frequency domain
according to critical band analysis and the excitation
pattern of the basilar membrane in the inner ear [4].
These masking properties are not used in the signal
subspace approach for noise reduction [5] because it
does not operate in the frequency domain as is the case
with the spectral subtraction methods. In this paper
we present a relationship between the signal subspace
domain and the frequency domain which provides a
way to calculate a perceptually based upper bound for
the residual noise. This bound, when used in the sig-
nal subspace approach, yields an improved result where
the residual noise is much less annoying than the usual
musical noise.

This paper is organized as follows. In section 2
we briefly describe the eigenfilter used in the enhance-
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ment method. A relationship between the frequency
domain and the eigen domain which allows the use
of the masking properties into the signal subspace ap-
proach is described in section 3. The masking thresh-
old is explained in section 4 and the overall algorithm
is summarized in section 5. Finally results are given in
section 6 and a conclusion in section 7.

2. THE SIGNAL SUBSPACE APPROACH

In this section we introduce the signal subspace ap-
proach for speech enhancement presented by Ephraim
and Van Trees in [5]. We just focus on the spectral
domain constraint (SDC) estimator since the time do-
main estimator (TDC) can be viewed as a special case
of the SDC.

Let x = s + w be the noisy observed vector where
s is the desired vector and w is a white noise vec-
tor with variance o2. The eigendecomposition of the
covariance matrix Rs of the clean vector is given by
R, = UA,U”. We want to find a linear estimator of
s given by § = Hx = Hs + Hw. The residual error
signal is given by

r=s-s=H-I)s+tHw=r;+r, (1)

The enhancement filter H is found by minimizing the
signal distortion

m}iln tr(E{r,r}) (2)
subject to
E{|lu'r,|*} < ajo? (3)

which ensures that the k' spectral component of the
residual noise be below some threshold. Here uy, is the
kth eigenvector of R, with eigenvalue A;, . The solution
to this problem is

H=UQU# (4)

where Q = diag(qx) = diag(aiﬁ).



Several choices are available for the diagonal com-
ponents of the matrix (). To put these choices under a
unique interpretation, we define the quantity

Yo = 0%/ Ask ()

which is the inverse of the SNR on the kth spectral
component. Then we let ¢, = f(v) where f(.) is a

decreasing function satisfying f(0) = 1 and f(c0) — 0.

1/u
v+1/u

A possible choice for this function is fi(y) =
leading to
Asi

= sy + po?

which is the solution of the time domain constraint lin-
ear estimator. A second choice which has more noise
suppression capabilities is fo(y) = exp(—vy) which
gives
qr = e "7 e

In practice A is not available so it is approximated
as Ay = A, — Bo?1 where A, is the eigenvalue matrix
of the noisy vector x and 3 is a scalar usually chosen to
be one. This approximation tends to be one of the rea-
sons behind the annoying residual musical noise. In the
method we are proposing in this paper we try to replace
A with another quantity which takes into account the
masking properties of the human ear in order to shape
the noise spectrum like the desired speech signal and
eventually mask it.

3. RELATIONSHIP BETWEEN THE
EIGENVALUES AND THE PSD

The properties of the human auditory system are espe-
cially understood in the frequency domain'. Therefore
these properties have to be mapped to the eigen do-
main so that they can be used to design the eigenfilter
presented in section 2. Namely we need a two-way
relationship which relates the power spectrum density
(PSD) of a random signal to the eigenvalues of its co-
variance matrix.

Let R = toeplitz(r(0),...,r(P — 1)) be the covari-
ance matrix of a zero mean random process z(n) with
autocorrelation function r(p) = E{z(n)z*(n+p)}. Let
A; and u; = [u;(0), ..., u;(P—1)]T be the i" eigenvalue
and unit norm eigenvector of R respectively, then ); is
related to the PSD ®(w) = 3372 7(p)e™“? of x(n)
as follows:

27

A l/wtl)(w)|Vi(w)|2dw fori=1..P (6)

-7
where

P-1
Viw) = D wi(p)e 77 (7)
p=0

Mn this paper we are interested in the simultaneous masking
which is a frequency domain phenomenon.

is the discrete-time Fourier transform of u;(p).

This relationship can be found in many statistical
signal processing books and is basically used to prove
the Eigenvalue Extremal Property [6].

In practice just an estimate of the PSD is avail-
able. Of interest in the context of this paper is the
Blackman-Tuckey estimate which is the discrete-time
Fourier transform of a windowed version of the auto-
correlation function r(p),

P-1

Tpr(w)= Y r(p)ws(p)e " 8)

p=—P+1

If wy(p) is a Bartlett (triangular) window defined as
wp(p) = 1— % for |p| < P then the Blackman-Tuckey
estimate can be written in terms of the eigendecompo-
sition of R as follows [6]

1 P
Spr(w) = 5 > MilVilw)l? 9)
i=1

Equation (9) can be considered as the ”inverse” of
equation (6) although mathematically speaking this is
not correct. A detailed derivation of these two relation-
ships is given in the appendix.

The power spectrum estimate ® gp(w) is a smeared
version of the PSD of z(n) obtained by convolving ®(w)
with the Fourier transform of wy(p). However, in our
current application this is not a problem since we will
eventually be applying some transformations to the
spectrum which will cause more severe smearing [4].
These relationships are to be used in the new proposed
method for speech enhancement described in section 5.

4. CALCULATING THE MASKING
THRESHOLD

In this section we briefly describe the steps required to
calculate the masking threshold.

The human ear can not distinguish between two
frequencies belonging to the same critical band and
its resolution is usually linear up to 1KHz and loga-
rithmic thereafter. So the first step in calculating the
masking threshold is critical band analysis which con-
verts the linear frequency scale to the logarithmic Bark
scale [4]. After that, masking between different criti-
cal bands is taken into account by convolution with a
spreading function. This imitates the excitation pat-
tern of the basilar membrane in the inner ear where
the cells of the basilar membrane corresponding to a
critical band are also excited by other frequencies in
neighboring bands. The spreading function we used
has lower & upper skirts with slopes of +25 dB and
-10 dB per critical band respectively [7].

The final step is the subtraction of a relative thresh-
old offset depending on the masker type (tonal or non-
tonal). As in [1] we use the method suggested in [8]



which estimates the tonality instead of calculating it
exactly. It is based on the fact that the speech sig-
nal has a tone like nature in lower critical bands and
a noise like nature in higher critical bands. The step
which accounts for absolute threshold of hearing is not
included since it can be done using the control param-
eters of the eigenfilter. The detailed steps to calculate
the masking threshold can be found in [4] and [1].

5. THE PROPOSED ALGORITHM

In this section we show how to put everything together
and describe the steps required to implement the algo-
rithm. We try to use matrix notation whenever possi-
ble to make the straight forward implementation of the
algorithm as easy as possible.

5.1. Implementation

Although the signal subspace approach outperforms
the spectral subtraction methods [5] especially at very
low SNR conditions, its major drawback remains the
large computational load required to calculate the co-
variance matrix and especially its eigendecomposition.
To solve this problem Gazor and Rezayee [9], for exam-
ple, propose an adaptive approach based on the PASTd
subspace tracking algorithm. However this method is
based on estimating the covariance matrix using a slid-
ing exponential window which introduces some unde-
sired reverberation to the enhanced signal. Therefore
we prefer a slightly modified version of the method pro-
posed in [5] to calculate the signal subspace.

We divide the speech signal into overlapped frames
of length N. The N samples are used to calculate
the first P coefficients of the biased autocorrelation
function, efficiently implemented using the FFT. From

these coeflicients, a toeplitz covariance matrix is formed.

An eigenfilter is designed using the eigendecomposi-
tion of this covariance matrix as explained in the next
subsection. Every frame is divided into smaller P-
dimensional overlapping vectors, and every vector is en-
hanced using the same eigenfilter of the current frame.
The vectors are then multiplied by a Hanning window
and synthesized using the overlap-add method. Finally
every frame is multiplied by a second Hanning win-
dow and the total speech signal is recovered using the
overlap-add synthesis technique.

With this method, we need to calculate a new eigen-
filter less frequently hence reducing the computational
load. Besides, this frame by frame processing makes it
easy to merge the signal subspace approach with other
speech enhancement techniques like spectral subtrac-
tion to further reduce the computational cost without
degrading the enhanced speech quality.

5.2. Calculating the eigenfilter

Given the P-dimensional noisy speech vector x and the
eigendecomposition of its covariance matrix R. Con-
sider the vector Ay = [Ag; Agy .- Asp)? where Ay, =
i — o2, A is the it" eigenvalue of R, o2 is the noise
variance and [ is a scalar. Define the matrix V which
has the amplitude squared of the discrete Fourier trans-
form of the eigenvectors of R on its columns. Having
defined all the necessary quantities, equation (9) is im-
plemented to calculate the PSD as follows

1
P = FV)\S (10)
With this PSD a masking threshold @ can be calcu-
lated as described in section 4. After that a new set of
eigenvalues is recovered using equation (6) as follows

1
Ag = EVH% (11)

where K is the DFT size. The masking properties
of the human ear are now embedded in this new set
of eigenvalues. So the eigenfilter of equation (4) de-
signed using these eigenvalues, will shape the residual
noise spectrum like that of the desired speech signal
and eventually reduces the musical noise.
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Figure 1: Spectrograms of (a)clean
(b)Ephraim’s method (c) proposed method.
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6. RESULTS

In our simulations a speech signal sampled at 8Kz was
used. The algorithm was implemented using the fol-
lowing parameters. P = 32, N = 256, 8 = 1, fa(y)
was used for the gain matrix ) with v = 3. The size
of the DFT was K = 256. Figure 1 shows the spectro-
grams of a clean speech signal, a signal enhanced us-
ing Ephraim’s signal subspace method and finally using
our proposed method. It can be seen that our method
reduces the musical noise.



Besides, ten people were asked to take a listening
test to evaluate the proposed method and compare it
with the non processed noisy signal and with Ephraim’s
signal subspace approach. Every recording consisted
of two sentences spoken consecutively by two male and
two female speaker. Computer generated white noise
was added to the recordings at an average SNR of 20
dB, 10 dB and 5 dB. The recordings were presented
to the listeners in pairs each representing two different
processing methods. The listeners were asked to com-
pare the two recordings and choose the one they prefer.
Table 1 shows the results of this test. On the aver-
age the listeners preferred the enhanced signal over the
noisy signal 88% of the times and preferred the use of
masking threshold in 73% of the times. The proposed
method becomes more useful at very low SNR condi-
tions where the subjects voted for the use of masking
threshold to enhance the speech signals in 95% of the
times. The recordings used in this test can be found in
the web site mentioned in the title as a demo.

Input | Compared with Compared with
SNR noisy signal Ephraim’s method
20 dB 95% 60%

10 dB 85% 65%

5 dB 85% 95%

Table 1: Listening test results

7. CONCLUSION

In this paper we presented a signal subspace noise re-
duction method which uses the masking properties of
the human ear. Listening tests show that our method
largely reduces the effect of musical noise and hence
improves the quality of the enhanced speech.

8. APPENDIX

In this appendix we prove the relations (6) and (9)given
above.

Proof. By definition we have
P—1P-1

Ni=uf Ruy =Y Y ui(p)r(p — quilg)

p=0 ¢=0

So using the relation

) =5 [ )

=5/
we get
P-1P-1 1 .
No= Y S uuley, [ B ds
p=0 ¢=0 -

= 3 / O (w)V;(w)V;* (w)dw

And this completes the proof for (6). In a similar way
we have

1L
2 Z/\i“/i(wﬂz

i=1

| Poipol P
=5 SN eiwma) Z Aiui(p)u; (q)
p=0 ¢=0 =1
| Po1Pol ‘
=5 r(p — q)e i@ =9
p=0 ¢=0
;| Pl
=5 r(p)(P — |p)e™7”
p=—P+1
Which proves (9) O
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