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ABSTRACT 

In this paper, we introduce a single channel speech enhancement 
algorithm based on regularized non-negative matrix factorization 
(NMF). In our proposed formulation, the log-likelihood function 
(LLF) of the magnitude spectral components, based on Gaussian 
mixture models (GMM) for both the speech and background noise 
signals, is included as a regularization term in the NMF cost func­
tion. By using this spectral type of regularization, we can incorporate 
the statistical properties of the signals during the estimation of both 
the basis and excitation martices in NMF model. Furthermore, bor­
rowing from the expectation-maximization (EM) algorithm and to 
reduce the computational complexity of the NMF update, the LLF 
is replaced by its expected value. Experimental results of percep­
tual evaluation of speech quality (PESQ), source-to-distortion ratio 
(SDR) and source-to-interference ratio (SIR) show that the proposed 
speech enhancement algorithm provides better performance than the 
compared benchmark algorithms. 

Index Terms - Regularized non-negative matrix factorization, 
expectation-maximization, Gaussian mixture model, single channel 
speech enhancement 

1. INTRODUCTION 

Speech enhancement algorithms are commonly used to remove ad­
ditive background noise from a speech signal in order to improve 
its quality and intelligibility. They have been an attractive research 
area for decades and now find diverse applications such as in mo­
bile telephony, hearing aid, and speech recognition, to name a few. 
Despite considerable advances made over the year in this area, the 
enhancement of speech contaminated by adverse noise, especially 
under low-SNR or non-stationary conditions, remains an open prob­
lem. 

Numerous algorithms for single channel speech enhancement 
have been proposed in the past, such as: spectral subtraction [I], 
minimum mean-square error (MMSE) estimation [2, 3] and sub­
space decomposition [4]. Besides these algorithms which use mini­
mal a priori information about the speech or noise, further improve­
ments of MMSE-based estimators have been proposed by modeling 
the speech spectrum as a Rayleigh mixture model (RMM) [5] or a 
Gaussian mixture model (GMM) [6]. The latter two approaches, 
which use model parameters derived from a training set for the 
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clean speech, provide a more detailed and accurate description of 
the speech distribution and are better suited to handle non-stationary 
speech features. However, the background noise is assumed to be 
modeled by a single stationary distribution, which is one of the main 
limitations of these works. 

The non-negative matrix factorization (NMF) approach is a 
method for decomposing a given matrix into basis and excitation 
matrices with non-negative elements constraint [7]. It has been ap­
plied to various problems such as source separation [8, 9], music 
transcription [10] and speech enhancement [11, 12, 13]. One of the 
main advantages of NMF-based algorithms in the context of speech 
enhancement is that they can handle the non-stationarity of both the 
speech and noise signals simultaneously. In [II], a MMSE filtering 
method for speech enhancement is proposed where the filter is ob­
tained by using NMF. The temporal dependency of the spectral com­
ponents between successive time frames is modeled by means of a 
hidden Markov model (HMM) in [12]. In [13], a methods of speech 
enhancement based on the use of NMF with priors is proposed. 

In order to improve the performance of the NMF, many ap­
proaches have been proposed to satisfy certain characteristics of 
the nature of the signals. A typical approach is to add explicit 
regularization term to the conventional NMF cost function, and 
minimize the sum. The use of such additional regularization is 
considered in [10] and references therein. Although some of the 
above cited NMF-based techniques exploit regularization through 
specific mechanisms, such as sparsity and temporal continuity, they 
do not consider the statistical nature of the signals. In this paper, 
we introduce a single channel speech enhancement algorithm based 
on regularized NMF. The novelty of our proposed approach lies 
in the incorporation of the log-likelihood function (LLF) of the 
observed data as a regularization term in the NMF cost function. 
In this formulation, the LLF is derived based on a GMM for both 
the speech and noise magnitude spectral components. By using 
this spectral type of regularization, we can exploit the statistical 
properties of the signals during the estimation of both the basis and 
excitation matrices. Hence, the proposed algorithm ditlers from [9] 
and [13] which apply the statistical model only to the excitation 
matrix. Furthermore, borrowing from the expectation-maximization 
(EM) algorithm and to reduce the computational complexity of the 
NMF update, the LLF is replaced by its expected value. Experi­
mental results of perceptual evaluation of speech quality (PESQ) 
[19], source-to-distortion ratio (SDR) and source-to-interference 
ratio (SIR) [20] show that the proposed method provides better 
performance than the compared benchmark algorithms for speech 



enhancement. 

2. NMF-BASED SPEECH ENHANCEMENT FRAMEWORK 

For a given K x L matrix V = [Vkl], NMF finds a local optimal 
decomposition of V = WH where W = [WkmJ is a K x ]vI ba­
sis matrix, H = [hmd is a ]vI x L excitation matrix and all of 
these matrices have non-negative elements [7]. The number of ba­
sis vectors, M, is typically chosen such that K M + M L « K L. 
The factorization is obtained by minimizing a cost function, denoted 
as :J(V, WH). By expressing the gradient of the cost function as 
the ditlerence of two non-negative terms such that V:J(V, WH) = 
V+ :J(V, WH) - V-:J(V, WH), solutions can be obtained using 
general heuristic multiplicative update rules as [9, 10, 14]. {w +- W ® V�:J(V, WH) 

Vw:J(V, WH) 

H H 
Vii :J(V, WH ) 

+- ® ----'+c------'---'-----'-
VH:J(V, WH) 

(1) 

where the operations® and / respectively denote element-wise mul­
tiplication and division. Among various cost functions, the most 
widely used one is the Kullback-Leibler (KL) divergence, defined as 

� ( Vkl ) 
VKdV, WH) = � vklln 

[WHJkl 
- Vkl + [WHJkl 

k,l 
(2) 

where [']kl denotes the (k, l)-th entry of its matrix argument. The 
update rules for the KL divergence are given by [7] 

(3) 

where 1 is a K x L matrix of ones and the superscript T a matrix 
transpose. 

In single channel speech enhancement, the observed time­
domain signal is decomposed into overlapping frames of length K. 
The samples in each frame are multiplied by a suitable window func­
tion and then transformed to the frequency domain via the short-time 
Fourier transform (STFT). The resulting signal model is therefore 
expressed in the time-frequency domain as, 

Y(k, I) = 5(k, I) + N (k, I) (4) 

where Y(k, I), 5(k, I) and N (k, I) respectively denote the STFT of 
the noisy speech, the clean speech and the additive background noise 
for the k-th frequency bin of the l-th time frame, where 1 S k S K 
and 1 SiS L. Note that the first sample of the STFT coefficients 
for a given time frame, e.g., 5(1, I), denotes the DC component. 
We assume that the magnitude spectrum of the noisy speech can be 
approximated by the sum of the clean speech and noise magnitude 
spectra as lY(k,I)1 i=::j 15(k, 1)1 + IN(k, 1)1, as it is a practical as­
sumption widely used in the NMF-based speech and audio signal 
processing [8]-[13]. This signal model can be expressed in a matrix 

form as Vy i=::j V s+V N = W sHs+W NHN where the (k, l)-th en­
try of matrices Vy, V s and V N are respectively VY.kl = lY(k, I) I, 
VS,kl = 15(k,I ) 1 and vN.kl = IN(k,I)I· 

NMF-based speech enhancement algorithms consist of two 
stages. In the training stage, by applying the NMF update rules in 
(3) to the magnitude spectrum of the training data sets, as represented 
by matrices V s and V N, the basis matrices, W sand W N, are ob­
tained. In the enhancement stage, these pre-trained basis matrices 
of clean speech and noise are concatenated as Wy = [Ws W NJ. 
By fixing this basis matrix, the excitation matrix of the noisy speech, 
Hy = [H� H� f, is estimated once again by applying the NMF 
update rule to the magnitude spectrum of the noisy speech, i.e., V y . 
Finally, the magnitude spectrum of the clean speech is estimated 
51 = W sHs. The phase of the noisy signal is combined with the es­
timated magnitude spectrum of the clean speech and is reconstructed 
in the time domain via the overlap-add method. 

3. PROPOSED ALGORITHMS - TRAINING STAGE 

In this section, the update rules for the training data sets are intro­
duced. Note that we use general expressions in terms of Wand H 

so that the results apply to both the clean speech and noise. The cost 
function of the regularized NMF is shown as 

:J = V(V, WH) - aR(W, H) (5) 

where V(V, WH) is a selected measure of the distance between V 

and WH, a> 0 is a regularization coefficient and R(W, H) denotes 
the regularization term. Note that in this work, a negative sign is ap­
plied to the regularization term R(W, H) in (5) , since the latter will 
indeed represent a reward (as opposed to a penalty). By expressing 
the gradient of each term in (5) as the difference of the two positive 
terms and using the same rules as in (I), the heuristic multiplicative 
update rules of the regularized NMF can be written as [9, 10], {w +- W ® V�V(V, WH) + aV�R(W, H) 

VwV(V, WH) + aVwR(W, H) 

H H 
VilV(V, WH) + aV�R(W, H) 

+- ® �+�--'---'-----'-----���� 
V H V(V, WH) + aVil R (W, H) 

(6) 

In general, the update rules given in (6) do not guarantee conver­
gence of the iterative process [10]. Especially, a proper value for the 
regularization coefficient has to be chosen. In our case, this value is 
determined empirically using validation data (see Section 5). 

As for V(V, WH), we use the above mentioned KL divergence 
as given by (2). The gradients of V(V, WH) in (6), therefore, are 
the same as in (3), that is !V�V(V' WH) = V�VKL(V, WH) = IHT 

VwV(V, WH) = VWVKL(V, WH) = (V /WH)HT 

(7) 
V�V(V, WH) = V�VKL(V, WH) =WTl 

VilV(V, WH)=VilVKL(V, WH) = WT(V/WH) 

The magnitude spectrum of the signal can be modeled by a 
GMM to deal with non-stationarities [6]. Under this statistical as­
sumption, we use the corresponding LLF as the regularization term 



in (5). Note that this approach differs from [9, 13] which apply the 
statistical model only to the excitation matrix. 

Since V � WH, we consider WH as the observation matrix 
where the probability density function (pdf) of each column, say 
[WHh for I E {I, ... L}, is modeled by a Gaussian mixture. By us­
ing this assumption, we can derive the gradients of the regularization 
term with respect to Wand H. For a K-dimensional multi-variate 
random vector [WH]I, the GMM is defined in terms of the paramet­
ric probabilistic model 

I 

j([WH]lle) = L miN([WHhlJ-ti, �i) (8) 
i=l 

where I is the number of Gaussian mixture components, mi for 
i E {I, . . .  , I} are mixing coefficients such that Li mi = 1, 
N([WHhlJ-ti, �i) denotes the pdf of K-dimensional Gaussian pdf 
with mean vector J-ti and covariance matrix �i for the i-th compo­
nent and e = {mi' J-ti, �i H=l is a parameter set of a GMM. Under 
the assumption of independence for STFf data obtained over ditler­
ent frames, the LLF of the observed set WH is given by 

L 

L(WHle) = Llnj([WHhle). (9) 
1=1 

Recall that matrix WH represents the magnitude spectrum of the 
training signal, either the clean speech or noise in our case. By using 
Jensen's inequality, we can construct a lower bound on the LLF such 
that [15], 

L(WHle) 2'" t t Fr(Zi = 11 [WH]I) In miN([WH]IIJ-ti, �i) 

1=1 i=l Fr(Zi=II[WH]I) 

!=. LB (WHle) (10) 

where z = [Zl, Z 2, . . .  , zIf is a I-dimensional binary latent vector 
in which Zi E {D, I} and Li Zi = 1. Each element, Zi, is an in­
dicator of the corresponding Gaussian component whose marginal 
distribution is related to the corresponding mixing coefficient as in 
mi = Fr(Zi = 1) and LB(WHle) denotes the lower bound of the 
LLF. Fr (Zi = 11 [WHh) is the posterior probability of Zi = 1 given 
the observation [WH]I, which is given by, 

(11 ) 

In the expectation-maximization (EM) algorithm, the posterior prob­
ability is computed during the expectation step (E step), and the pa­
rameters are estimated by maximizing L B (WH Ie) in the maximiza­
tion step (M step). Since the posterior probability is fixed during the 
M step, the maximization problem is equivalent to maximizing the 
expected value of the complete-data LLF with respect to the poste­
rior distribution of the latent vector, Lc(WHle), which is defined 
as 

L I 

Lc(WHle) � LLFr(Zi = II[WH]I) 
1=1 i=l 
·In[miN([WH]IIJ-ti, �i)] (12) 

Instead of using the LLF described in (9) as in [9], we propose to use 
Lc(WHle) as the regularization term in (5) to lower the computa­
tional complexity, that is R(W, H) = Lc(WHle). 

We considered diagonal-variance by ignoring the correlations 
between spectral components for simplicity. The components of the 
gradients of the regularization terms are found as 

where 
L I 

V�k,JC = LLFr(Zi = II[WH]I)�;�kMi,khml 
1=1 i=l 

L I 

(13) 

(14) 

V�knJC = LLFr(Zi = II[WH]I)�;�dWH]klhml (15) 

and 

where 

1=1 i=l 

K I 

Vt,LC = LLFr(Zi = II[WH]I)�;�kMi,kWkm 
k=li=l 

K I 

(17) 

VhmlLC = L L Fr(Zi = II[WH]I)�;�dWH]klWkm (18) 
k=li=l 

where Mi,k denotes the k-th element of the mean vector J-ti and �:;�k 
indicates the (k, k )-th element of the inverse covariance matrix �; 1 . 
The dependence of Lc (WHI e) in (13)-( 18) on WH and e is omitted 
for notational convenience. Since the posterior probability and all 
elements of the mean vector and covariance matrix are non-negative, 
the values from (14), (15), (17) and (18) will be non-negative. By 
using (6), therefore, W and H are updated under the non-negative 
elements constraint. 

The parameter set e = {mi' J-ti, �;}{=1 can be estimated by 
employing the EM algorithm as in [15], which results in 

1 L 

mi = L L Fr(Zi = II[WH]I) 

Mi,k 

�i,kk 

1=1 

Lt=l Fr(Zi = II[WH]I)[WH]kl 
Lt=l Fr(Zi = II[WHh) 

Lt-1 Fr(Zi = II[WH]I)([WH]kl - Mi,k)2 

Lt=l Fr(Zi = II[WH]I) 

(19) 

In our approach, the initialization of Wand H is performed by 
running the conventional NMF with KL-divergence constraint while 
the magnitude spectrum of the signal, V, is used to train the initial 
parameter set, e, via the EM algorithm. Each algorithm is also ini­
tialized by using positive random numbers and k-means clustering. 

Two different training algorithms are considered. We first pro­
pose to use a two-stage joint update (TSJU) method which follows 
a similar approach as the joint update method described in [9]. At 
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Fig. 1. Average SNR values of estimated clean speech with ditlerent 
numbers of components in the GMM. 

each iteration: the posterior distribution is first calculated using (11); 
Wand H are then updated using (6), (7), (14), (15), (17) and (18); at 
the end of the iteration, fJ is estimated by running the EM algorithm. 

Focusing on the regularization term R(W, H) in (5) where we 
used the expected LLF, we can consider the update rules for Wand 
H along with fJ as a parameter estimation using the EM algorithm. 

Based on this idea, we suggest another algorithm which will be re­
ferred to as the single-stage joint update (SS.lU) method and where 
all the parameters , W, H and fJ, are estimated in one stage. At each 
iteration: the posterior distribution is first calculated using (11); W 
and H are then updated using (6), (7), (14), (15), (17) and (18); at the 
end of the iteration, fJ is calculated using (19). Note that SS.lU dif­
fers from TS.lU, which uses an additional iterative computation for 
the EM algorithm to estimate fJ at the end of each iteration. There­
fore, a more efficient implementation is provided by SS.lU. 

4. PROPOSED ALGORITHMS - ENHANCEMENT STAGE 

The enhancement stage follows a similar strategy as in [9]. First, 
the basis matrices of both clean speech and noise are concate­
nated as Wy = [Ws WN]. Once the magnitude spectrum of 
the noisy speech is computed, the excitation matrix of the noisy 

A AT AT T speech, H y  = [Hs HN] , is estimated by fixing the basis ma-
trix Wy and the parameter sets of both clean speech and noise, 
fJs = {mi,s, /-ti,S, �i,S};;"'l and fJN = {mi,N,/-ti,N, �i,N };"'l' 

which are estimated during the training stage. The cost function in 
the enhancement stage can be written as 

Ry(Wy, H y) = aSLc(WsHslfJs) + aNLc(WNHNlfJN) 

(21) 
where LC (W s Hs I fJ s) and LC (W s Hs I fJ s) take the same form as 
in (12), as and aN are regularization coefficients of the clean speech 
and noise for the enhancement stage, respectively. The excitation 
matrix is obtained in a similar way as in (6), that is 

Fig. 2. Average SNR values of estimated clean speech from babble 
noise with ditlerent regularization coefficients for the enhancement 
stage. 

The gradient terms in (22) are given by (7), (17) and (18). 
As in the conventional NMF, the magnitude spectrum of the 

clean speech is estimated by S = W sHs. Finally, the phase of the 
noisy speech is combined with the estimated magnitude spectrum of 
the clean speech and the enhanced speech signal is reconstructed in 
time domain. 

5. EXPERIMENTS 

5.1. Methodology 

In this section, experiments and performance evaluations of our 
methods are presented. We used clean speech from the TSP database 
[16] and noise from the NOISEX database [17], where the sampling 
rate of all signals was adjusted to 8 kHz. The noisy signals were 
generated by adding babble noise and factory noise at three differ­
ent input signal-to-noise ratios (SNR) of 0, 5 and 10 dB. Magnitude 
spectrum of each signal is obtained by using Hanning window of 
512 samples with 50 % overlap. The signal synthesis was performed 
using the overlap-add method. 

For clean speech, 8 speakers (4 male and 4 female) were con­
sidered with 10 sentences each for training data, 2 sentences for val­
idation and test data. For babble and factory noise, 30 second-long 
signals were used for training set and a length which corresponds to 
the validation and test data of the clean speech was used for valida­
tion and test sets. Note that all these data sets were disjoint. Vali­
dation and test sets were used to generate noisy speech. We exam­
ined the algorithms with 96 basis vectors for both clean speech and 
noise. Besides the number of the basis vectors, appropriate values of 
hyper-parameters such as the number of components in a GMM and 
regularization coefficients had to be obtained. 

The hyper-parameters in our model are the number of compo­
nents in the GMM, J, the regularization coefficients for the training 
stage, atTain, and the enhancement stage, as and aN. The vali-
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Fig. 3. Example of magnitude spectrum of clean, noisy and esti­
mated clean speech. A male speech is degraded with babble noise at 
5 dB input SNR. 

dation sets were used for the estimation of hyper-parameters. First, 
the regularization coefficient in the training stage was obtained by 
observing the convergence behavior of the KL divergence in (2) as 
a measure of the decomposition error. We found that the proposed 
training method converged well for values of atrain under 0.0003. 
In our implementation, we used atrain = 0.00005 for both the clean 
speech and noise. After fixing atrain, we conducted simulations for 
ditlerent number of mixtures in the GMM, i.e., I E  {8, 16, 32, 64}. 
Fig. 1 shows the average SNR of the estimated clean speech us­
ing the SSJU approach by varying as = a N from 0.0001 to 0.001 
with 0.0001 increments. The highest SNR was found at Is = 8 and 
IN = 32 and consequently, we used these values in our implemen­
tation of the GMM. The same were found when using the TSJU ap­
proach. Finally, appropriate values for as and aN were obtained by 
fixing the previously estimated hyper-parameters atrain, Is and IN. 
An example of average SNR values of estimated clean speech from 
babble noise with different as and aN is shown in Fig. 2. A similar 
pattern was also found with factory noise for both SSJU and TSJU. 
Based on this observation, we chose (as, as) = (0.0001, 0.008). 

5.2. Results 

We used perceptual evaluation of speech quality (PESQ) [19], 
source-to-distortion ratio (SDR) and source-to-interference ratio 
(SIR) [20] as the objective measures of performance. The PESQ 
attempts to predict the overall perceptual quality in mean opinion 

Table 1 PESQ SDR and SIR for babble noise , , 
Input Eva!. Wiener CNMF RNMF SSJU TSJU SNR 

PESQ 1.74 1.72 1.77 1.9 1.89 
o dB SDR 0.82 1.61 2.3 3.98 3.88 

SIR 1.98 3.96 1.95 7.5 7.2 
PESQ 2.07 2.09 2.08 2.24 2.24 

5 dB SDR 5.76 5.88 6.76 7.9 8.01 

SIR 7.31 9.8 7.07 15.66 15.34 
PESQ 2.31 2.44 2.41 2.48 2.47 

lOdB SDR 9.82 8.85 9.87 9.35 9.56 
SIR 12.32 15.06 12.21 22.16 21.8 

Table 2 PESQ SDR and SIR for factory noise , 
Input Eva!. Wiener CNMF RNMF SSJU TSJU SNR 

PESQ 1.76 1.8 1.76 1.97 1.97 

o dB SDR 3.96 4.36 3.99 5.9 5.96 

SIR 7.68 6.58 4.55 9.93 10.2 

PESQ 2.08 2.14 2.09 2.3 2.32 

5 dB SDR 8.01 8.73 8.62 9.74 9.78 

SIR 12.94 11.85 9.74 17.42 17.67 

PESQ 2.33 2.46 2.38 2.53 2.54 

!OdB SDR 10.98 12.13 12.14 11.49 11.58 
SIR 17.65 16.87 14.76 23.34 23.6 

score (MOS) yielding a result from I to 4.5. The SDR reflects the 
overall separation quality on a dB scale, considering both speech 
distortion and noise reduction aspects. The SIR reflects the noise 
reduction also measured on a dB scale. For all these measures, a 
higher value indicates a better result. As for the comparison, we con­
sidered Wiener filtering method, conventional NMF (CNMF) and 
the method introduced by Grais et a!.[9], which will be referred 
to as RNMF. The Wiener filter was obtained by using the noise 
power spectral density (PSD) estimation introduced in [18]. Hyper­
parameters in RNMF were obtained using a similar process as the 
one described in Sec. 5.1. 

Fig. 3 demonstrates an example of the magnitude spectrums of 
the estimated clean speech using the proposed SSJU and TSJU meth­
ods. In this particular example, a male speech is degraded with bab­
ble noise at 5 dB input SNR. The bottom spectrographs clearly show 
that the proposed methods have been able to significantly reduce the 
background noise. For this case, we obtained (PESQ, SDR, SIR) = 

(2.45, 8.40, 14.65) and (2.52, 8.53, 14.36) for SSJU and TSJU, re­
spectively. Table I and 2 show the objective results of the proposed 
algorithms and reference methods for babble and factory noises at 
different SNR levels. It can be seen that in most cases (except for 
SDR at 10dB), the proposed SSJU and TSJU algorithms perform 
better than the reference methods. In particular, both algorithms 
lead to significantly higher values of PESQ and SIR. Moreover, the 
proposed algorithms showed significantly reduced noise in the esti­
mated clean speech based on the SIR observation, while maintain­
ing the best PESQ scores. Another interesting observation is that the 
proposed methods SSJU and TSJU provided similar results. This in­
dicates that highly improved performance can be obtained by using 
SSJU which is more efficient than TSJU in terms of computational 



complexity. 
Informal listening experiments were also conducted to evalu­

ate the performance of the proposed algorithms. It was generally 
found that SS.lU and TS.lU offered the best performance, followed 
by CNMF, RNMF and Wiener in that order. In terms of noise re­
duction, the proposed algorithms could remove more of the additive 
background acoustic noise than the other NMF-based algorithms un­
der evaluation, which in turn all performed better than Wiener filter­
ing, where the residual noise exhibited a less natural character. In 
terms of speech distortion, it was found that the enhanced speech 
was slightly more clearly audible with the proposed SSJU and TSJU 
algorithms, although some of the low frequencies in the voice sounds 
were somewhat attenuated. We conjecture that this might be cor­
rected by the use of spectral weighting in the NMF cost function or 
the associated regularization; this remains an interesting avenue for 
future work. 

6. CONCLUSIONS 

A single channel speech enhancement algorithm based on regular­
ized NMF has been proposed. Magnitude spectral components of 
both clean speech and noise were modeled by GMM. The corre­
sponding LLF was used as the regularization to the cost function of 
the conventional NMF in order to exploit the statistical characteris­
tics of the signals. The basis and excitation matrices were estimated 
using multiplicative update rules under the proposed regularization. 
In addition, the expected value of the LLF was employed for the 
regularization so that more efficient update equations are obtained. 
Experimental results based on PESQ, SDR and SIR showed that the 
proposed algorithm improves the performance. 
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