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ABSTRACT

We introduce a noise-adaptive feed-forward deep neural network
(DNN) for single-channel speech enhancement. The goal is to bet-
ter exploit individual noise characteristics while training a spectral
mapping DNN. To this end, we employ noise-dependent adaptation
vectors, which are obtained based on the output of an auxiliary noise
classification DNN, to adjust the weights and biases of the spectral
mapping DNN. The parameters of the spectral mapping DNN, noise
classification DNN and adaptation vectors are estimated jointly dur-
ing the training stage. During the enhancement stage, we combine a
classical unsupervised speech enhancement algorithm with the pro-
posed DNN-based approach to further improve the enhanced speech
quality. Experiments show that the proposed method provides better
enhancement performance than the selected benchmark algorithms.

Index Terms— Single-channel speech enhancement, deep neu-
ral network, classification

1. INTRODUCTION

The general objective of speech enhancement algorithms is to re-
move the background noise from a noisy speech signal to improve
its quality and/or intelligibility. These algorithms find diverse appli-
cations including mobile telephony, hearing aids, speech coding and
automatic speech recognition, to name a few. A considerable amount
of research efforts have been made in the past decades, leading to
various approaches, such as: minimum mean-square error (MMSE)
estimation [1], spectral subtraction [2] and subspace decomposition
method [3]. However, these classical methods were originally in-
troduced by using a minimal amount of a priori information about
the speech and noise. Consequently, they tend to provide limited en-
hancement performance, especially when the speech is corrupted by
adverse noise, such as under low input signal-to-noise ratio (SNR)
or non-stationary noise conditions.

To overcome these limitations, machine learning techniques
have been applied to the speech enhancement task and have shown
remarkable improvement in recent years. One of the widely con-
sidered technique is the non-negative matrix factorization (NMF)
method, e.g., [4, 5], which decomposes a given matrix into basis and
activation matrices with non-negative elements [6]. In a supervised
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framework, the basis vectors (also referred to as a codebook or dic-
tionary) of the speech and noise sources are obtained a priori from
the training data, and subsequently used during the enhancement
stage.

In recent years, deep neural network (DNN) algorithms have
gained enormous interest [7], and found diverse applications such
as image classification [8], automatic speech recognition [9] and
speech enhancement [10]. Supervised DNN training aims at es-
timating the nonlinear mapping function, specified by the weights
and biases of the hidden layers of a processing network, that relates
the input features to the target output features. Various DNN struc-
tures, such as deep autoencoder [11], feed-forward DNN [10] and
convolutional neural network (CNN) [12] have been employed for
speech enhancement. A recurrent neural network (RNN) has been
employed in [13, 14], to better capture the temporal dynamics of au-
dio signals. References [15, 16] consider a long-short term memory
(LSTM) network, which is a modified version of the RNN proposed
to lessen its effect of the long-term temporal dependency. A com-
bination of the NMF and DNN frameworks has been introduced in
[17, 18], while perceptually-motivated DNN algorithms have been
introduced in [19, 20]. Reference [10] proposes a noise-aware train-
ing (NAT) framework, where the noise information is utilized during
the DNN training by augmenting the estimated noise features with
the DNN input features. However, the noise features are obtained by
averaging first few frames of the given noisy speech spectrum and
fixed over the utterance, which may limit the ability of the DNN in
capturing the noise characteristics.

In this paper, we introduce a novel noise-adaptive feed-forward
DNN for single-channel speech enhancement. The goal is to bet-
ter exploit individual noise characteristics while training the spectral
mapping DNN. To this end, motivated by [21], we adjust the weights
and biases of the spectral mapping DNN via noise-dependent adap-
tation vectors. The latter are obtained based on the output of an aux-
iliary noise classification DNN. The parameters of the spectral map-
ping DNN, noise classification DNN and the adaptation vectors are
estimated jointly during the training stage. During the enhancement
stage, the clean speech signal is estimated from the spectral DNN,
which is dynamically adapted to an arbitrary noise type via noise
adaptation vectors without any additional fine-tuning step. More-
over, we combine a classical unsupervised speech enhancement al-
gorithm with the DNN-based approach to further improve the en-
hanced speech quality. Experiments focusing on different perfor-
mance metrics of interest show that the proposed method provides
better enhancement performance than the selected benchmarks.
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2. DNN-BASED SPEECH ENHANCEMENT

In single-channel speech enhancement problem, the noisy speech
spectrum, obtained via short-time Fourier transform (STFT), can be
expressed as

Ykl = Skl +Nkl (1)

where Ykl, Skl and Nkl respectively denote the STFT coefficients
of the noisy speech, clean speech and noise at the frequency bin
k ∈ {1, ...,K} and time frame l ∈ {1, ..., L}. The clean speech
spectrum can be estimated via Wiener filtering (WF) [22], that is,

Ŝkl =
P̂S
kl

P̂S
kl + P̂N

kl

Ykl = ĜklYkl (2)

where P̂S
kl and P̂N

kl respectively denote the estimated power spectral
densities (PSD) of the clean speech and noise. The latter are typ-
ically obtained via temporal smoothing of the periodograms of the
clean speech and noise spectral estimates as

P̂S
kl = τSP̂

S
k,l−1 + (1− τS)|S̃kl|2 (3)

P̂N
kl = τN P̂

N
k,l−1 + (1− τN )|Ñkl|2 (4)

where τS and τN are the smoothing factors for the clean speech and
noise. The estimates |S̃kl| and |Ñkl| can be obtained via a DNN
approach (e.g., [23]), as explained below.

Supervised DNN training aims at estimating the nonlinear map-
ping function, specified by the weights and biases of the hidden lay-
ers of a processing network, that relates the input features to the
target output features. Let m ∈ {1, ...,M} denote the hidden layer
index, where each layer consists of Im neurons. For a feed-forward
DNN, the output of the m-th hidden layer can be expressed in a vec-
tor form as

h(m) = f
(
W(m)h(m−1) + b(m)) (5)

where h(m) ∈ RIm is the output of the m-th hidden layer, W(m) ∈
RIm×Im−1 is the weight matrix, b(m) ∈ RIm is the bias vector, and
f(·) represents an activation function that operates component-wise.
Note that h(0) ∈ RI0 and h(M+1) ∈ RIM+1 respectively denote the
DNN input and output values.

In DNN-based speech enhancement, various types of input
and/or output features can be used, such as time-domain signal
samples, mel-frequency cepstral coefficients (MFCC), magnitude
or power spectral coefficients, ideal binary mask (IBM) or ideal
ratio mask (IRM). In this work, we consider the log-power spec-
tral coefficients (LPS) [10, 24]. That is, we employ the LPS of
the noisy speech (i.e., vY

l , [ln |Ykl|2] ∈ RK ) as the input
and the corresponding LPS of the clean speech and noise (i.e.,
vS
l , [ln |Skl|2] ∈ RK and vN

l , [ln |Nkl|2] ∈ RK ) as the target
output features. Specifically, we formulate the DNN target output
as [(vS

l )T (vN
l )T ]T [13, 18, 24], where superscript T is transpose.

The main DNN that maps the input noisy speech spectral features to
the output clean speech and noise spectral features will be referred
to as spectral mapping DNN.

For given training data sets [vY
l ], [vS

l ] and [vN
l ] (∈ RK×L), the

DNN parameters W = {W(m)} and b = {b(m)} are estimated by
minimizing the mean-square error (MSE):

E =
1

KL

L∑
l=1

[
‖ vS

l − ṽS
l ‖2F + ‖ vN

l − ṽN
l ‖2F

]
(6)

where ṽS
l , [ln |S̃kl|2] ∈ RK and ṽN

l , [ln |Ñkl|2] ∈ RK are
the DNN outputs and ‖ · ‖F is the Frobenius norm. During the

enhancement stage, once we obtain the DNN outputs ṽS
l and ṽN

l

from vY
l , the PSDs are computed based on (3) and (4), and the clean

speech spectrum is then estimated via (2). Finally, the enhanced
speech signal in the time-domain is reconstructed by applying the
inverse STFT to Ŝkl, followed by the overlap-add method.

3. PROPOSED NOISE-ADAPTIVE DNN

The structure of the proposed noise-adaptive feed-forward DNN,
which will be referred to as NA-DNN in the sequel, is illustrated
in Fig. 1. It consists of a modified version of the spectral mapping
DNN introduced Section 2, along with a noise classification DNN.
The output of the latter is used while computing the noise-dependent
weight adaptation and bias vectors, which in turn are used to adjust
the parameters of the spectral mapping DNN.

3.1. Internal structure of NA-DNN

Let us denote by j ∈ {1, ..., J} the noise class index, and by m′ ∈
{1, ...,M ′} the hidden layer index of the noise classification DNN.
The structure of the latter is similar to that of the spectral mapping
DNN in Section 2. The output of the m′-th hidden layer is written
as

h
(m′)
d = f

(
W

(m′)
d h

(m′−1)
d + b

(m′)
d

)
. (7)

where W
(m′)
d and b

(m′)
d respectively denote the weight matrix and

bias vector of the noise classification DNN. The input feature is vY
l

and the target output is a class label vector d = [dj ] ∈ RJ with
dj ∈ {0, 1}, such that

∑
j dj = 1.

Motivated by [21], we modify the weight matrix and bias vec-
tors of the spectral mapping DNN W(m) and b(m), and replace the
output of the m-th layer in (5) by the following hidden layer struc-
ture:

h(m) = f
(
diag{w(m)

a }W(m)h(m−1) + b(m)
a

)
(8)

where w
(m)
a ∈ RIm and b

(m)
a ∈ RIm are the noise-dependent

weight adaptation vector and bias vector. The latter are given by

w(m)
a = tanh

(
W(m)

w d̃ + b(m)
w

)
(9)

b(m)
a = tanh

(
W

(m)
b d̃ + b

(m)
b

)
(10)

where tanh(·) is the hyperbolic tangent function that operates
component-wise, and d̃ = [d̃j ] ∈ RJ is the noise classification
DNN output. Note that d̃j represents the estimated likelihood of
class j. The processes in (9) and (10) can be considered as map-
ping the input feature d̃ to w

(m)
a and w

(m)
b , where the mapping

functions are parameterized by W
(m)
w ∈ RIm×J , b(m)

w ∈ RIm ,
W

(m)
b ∈ RIm×J and b

(m)
b ∈ RIm .

In the proposed framework, we use rectified linear units (ReLU)
as the activation function for all hidden layersm andm′. We use the
linear and sigmoid activation functions for the output layers of the
spectral mapping DNN and noise classification DNN1, respectively.

1In a classification task, the softmax activation function is commonly used
for the output layer, and the DNN parameters are estimated by minimizing
the cross-entropy [25]. However, we empirically found that using the sig-
moid function and considering the MSE-based cost function provided better
enhancement performance in the proposed framework.
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Transform

Spectral mapping DNN

Noise classification DNN

Fig. 1. The architecture of the proposed noise-adaptive feed-forward DNN.

3.2. Training of NA-DNN

The parameters of the proposed NA-DNN, W = {W(m),

W
(m)
w ,W

(m)
b ,W

(m′)
d } and b = {b(m)

w ,b
(m)
b ,b

(m′)
d }, are esti-

mated jointly during the training stage. The proposed cost function
is written as

E=
1

KL

L∑
l=1

[
‖vS

l −ṽS
l ‖2F +‖vN

l −ṽN
l ‖2F

]
+

1

JL

L∑
l=1

‖dl − d̃l‖2F

+λ1

M+1∑
m=1

1

(J+1)2
‖ [b(m)

w W(m)
w ]T [b(m)

w W(m)
w ] ‖2F

+λ2

M+1∑
m=1

1

(J+1)2
‖ [b

(m)
b W

(m)
b ]T [b

(m)
b W

(m)
b ] ‖2F

+λ3

M+1∑
m=1

1

Im−1
‖ (w(m)

a )TW(m) ‖2F (11)

where dl = [djl] ∈ RJ and d̃l = [d̃jl] ∈ RJ are the target and
output of the noise classification DNN for the input feature vY

l . The
first and second terms in the first line in (11) correspond to the MSE-
based costs for the spectral mapping and noise classification DNN
outputs, respectively. The last three lines in (11) represent regular-
ization terms with regularization coefficients λ1, λ2, λ3 > 0. The
motivation of using the proposed regularization is explained as fol-
lows. As we can see in (9) and (10), the internal computations of
the mapping functions can be interpreted as a linear combination
of the columns of the weight matrices and the bias vectors (i.e.,
[b W][1 d̃T ]T ). Each column of W

(m)
w and W

(m)
b corresponds

to a specific noise type, and b
(m)
w and b

(m)
b can be considered as

common vectors to the noise types. Based on these aspects, we add
regularization terms to the MSE-based costs to enforce the columns
to be distinct, to better exploit individual noise characteristics while
computing w

(m)
a and w

(m)
b . To this end, we consider the orthogo-

nality between: i) the columns of [b
(m)
w W

(m)
w ] ∈ RIm×(J+1), ii)

the columns of [b
(m)
b W

(m)
b ] ∈ RIm×(J+1), and iii) the weight-

adaptation vector w(m)
a and the columns of the common weight ma-

trix W(m). The DNN parameters are updated iteratively via error
back-propagation with a stochastic gradient descent method [25].

3.3. Enhancement stage of NA-DNN

During the enhancement stage, we consider buffer processing [5].
That is, we aim at enhancing the noisy speech Ylb = [Ykl] ∈
CK×Lb obtained from consecutive time frames l ∈ {(lb − 1)Lb +

1, ..., lbLb} , Cb, where lb = 1, 2, ... is the buffer frame index and
Lb is the buffer size. For a given lb-th buffer frame, the spectral map-
ping DNN outputs are computed frame-by-frame. In contrast, the
noise classification DNN output d̃ (and the resulting weight adapta-
tion vector wa and bias ba) is obtained based on the average noisy
speech features, i.e., (1/Lb)

∑
l∈Cb

vY
l . The purpose of such an im-

plementation is to avoid rapid change of the estimated noise type
that may deteriorate the enhanced speech quality. Once the spectral
mapping DNN outputs are obtained, the clean speech spectrum can
be estimated via Wiener filtering as explained in Section 2.

To further improve the enhanced speech quality, motivated by [5,
26], we combine a classical speech enhancement algorithm with the
DNN-based framework. The basic idea is to use the classical method
as a pre-processor to first remove some stationary background noise,
and subsequently apply the DNN-based algorithm to further remove
the remaining noise components. In this work, we we use the well-
known MMSE short-time spectral amplitude (STSA) estimator [1]
as the pre-processor, where the noise PSD is estimated based on [27].

Let us denote by Ȳlb = [Ȳkl] ∈ CK×Lb the pre-processed noisy
speech for the lb-th buffer frame. We estimate the clean speech spec-
trum where the magnitude components are obtained via the geomet-
ric mean (GM) of the magnitude spectra of: i) the signal obtained via
WF (as explained in Section 2), ii) the pre-processed noisy speech
signal, and iii) the Wiener-filtered pre-processed noisy speech sig-
nal. By taking the phase from the noisy speech signal, the proposed
enhanced speech spectrum can be written as

Ŝkl =
∣∣∣ĜklYkl

∣∣∣1/3 ∣∣Ȳkl

∣∣1/3 ∣∣∣ĜklȲkl

∣∣∣1/3 e∠Ykl (12)

where  =
√
−1. The underlying motivation of using the GM is to

compensate for the over-reduced clean speech components. That is,
although Wiener filtering the pre-processed noisy speech can signif-
icantly remove the background noise components, the clean speech
signal can be distorted as well. In contrast, the classical method
tends to provide a limited performance on reducing the background
noise especially for a low input SNR, but the enhanced speech signal
contains most of the clean speech components.
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4. EXPERIMENTS

In this section, after describing the data sets and general methodol-
ogy, we present and discuss the experimental results.

4.1. Data sets

We conducted the experiments using the clean speech from the
TIMIT corpus [28] and the noises from the NOISEX database [29],
where the sampling rate of all signals was adjusted to 16 kHz. The
speech and noise files were divided into three disjoint groups: i)
training data, used for estimating the DNN parameters, ii) valida-
tion data, used for selecting tuning parameters such as regularization
coefficients, and iii) test data, used during the enhancement stage to
evaluate the enhancement performance. Regarding the clean speech
training data, we selected 128 speakers with 2 utterances from each
speaker from the TIMIT training set. For the noise training data, we
selected Babble, Factory1, HF-Channel, Buccaneer1, Destroyerops,
Leopard noises, where each noise type consisted of 3 minute long
signal. The noisy speech training data were artificially generated by
adding the noise training data to the clean speech training data to
obtain input SNRs of -10, -5, 0, 5 and 10 dB, assuming that a single
noise type is included in the noisy speech signal.

Regarding the test data, we selected 100 utterances from the
TIMIT test set for the reference clean speech. The noise test data
was catagorized into two groups, referred to as: matched and un-
matched cases. The matched case assumes that the noise type is also
presented in the training data, whereas the purpose of the unmatched
case is to evaluate the performance for an unseen noise type. To this
end, we additionally selected Destroyerengine, Pink and F16 noises
from the NOISEX database for the unmatched case. For both the
matched and unmatched cases, we considered two scenarios: single-
noise and multiple-noise conditions. The former scenario assumes
that a single noise type is included in the noisy speech signal. To
examine the latter scenario, we generated a test noise signal for each
matched and unmatched case, by summing all noise signals which
were adjusted to have same variances in the time domain. For all
cases, the noisy speech test signals were generated by adding the
noise test signal to the reference clean speech test signal to obtain
input SNRs of -10, -5, 0, 5, and 10 dB. The single-noise condition
was considered while generating the noisy speech training data.

Regarding the validation data, we selected 50 utterances from
the TIMIT test set. We considered the matched noise case for select-
ing noise validation data, and single-noise condition while generat-
ing the noisy speech validation signals.

4.2. Methodolody

Regarding the implementation, a Hanning window of 512 samples
with 50% overlap was employed for the STFT analysis. The spec-
tral mapping DNN was consisted of 3 hidden layers with 512 neu-
rons for each layer, and the noise classification DNN was consisted
of 2 hidden layers with 128 neurons for each layer. The weight ma-
trix for each hidden layer were initialized by generating Gaussian
random numbers with zero mean and standard deviation of 0.1 di-
vided by the number of the neurons, and all biases were initialized
to zero. Regarding the stochastic gradient descent method, we used
the mini-batch size of 128 and adaptive moment estimation (Adam)
optimizer [30] for 200 epochs. The initial learning rate was set to
0.001, which decreased by 10% for every 10 epochs. We adopted
dropout training while estimating the DNN parameters to avoid over-
fitting [31], where the rate was set to 0.8. The DNN input features
vY
l were normalized to have zero mean and unit variance across the

time frames l. We used τS = 0.4 and τN = 0.9 while computing

the smoothed PSDs in (3) and (4). The regularization coefficients
were set to λ1 = λ2 = λ3 = 0.001, and the buffer size Lb was set
to 8. A smoothing factor of 0.85 was used in the decision-directed
method to estimate the a priori SNR in the MMSE-STSA estimator
[1], and a factor of 0.9 was used in the noise PSD estimation [27].

To evaluate the performance of the proposed method, we im-
plemented several benchmark algorithms: i) MMSE-STSA [1] with
noise PSD estimated based on [27], ii) Bayesian NMF (BNMF) [32],
iii) feed-forward DNN introduced in Section 2, and iv) dynamic NAT
(dNAT) [33]. For the BNMF, we trained 120 speaker-independent
basis vectors as well as 120 noise-independent basis vectors. The
implementation of the BNMF algorithm for single-channel speech
enhancement can be found in [5]. The dNAT method, which was
proposed to overcome the limitation of the static noise feature-based
NAT method, considers the frame-wise estimated noise features.
Among several realizations of dNAT in [33], we implemented the
one referred to as dNAT1, which utilizes the noise features obtained
via [27]. Basic settings such as the STFT analysis and synthesis,
buffer size and DNN structure were kept identical when applicable.

We considered the perceptual evaluation of speech quality
(PESQ) [34], source-to-distortion ratio (SDR) [35] and extended
short-time objective intelligibility (ESTOI) [36] as the objective
measures of the enhancement performance. For all measures, a
higher value indicates a better result.

4.3. Results

Tables 1 and 2 show the average results over all utterances and all
noises for the matched and unmatched cases regarding the single-
noise condition. Tables 3 and 4 show the average results over
all utterances for the matched and unmatched cases regarding the
multiple-noise condition. The values in bold indicate the best per-
formance along the corresponding row. The objective results of the
BNMF, DNN and dNAT methods were computed using the WF-
based reconstruction method explained in Section 2. For all cases,
it can be observed that the proposed NA-DNN with the GM-based
reconstruction method exhibited the best performance. Comparing
between the DNN, dNAT and NA-DNN-WF methods, we can see
that the proposed NA-DNN-WF method gave better results than the
DNN and dNAT methods not only for the single-noise condition but
also the multiple-noise condition, in general. Comparing between
the WF and GM-based reconstruction methods (i.e., NA-DNN-WF
versus NA-DNN-GM), the latter method provided better perfor-
mance, which validates that employing the classical unsupervised
method can further improve the enhanced speech quality, especially
for the unmatched noise cases.

In the following, we comment on some additional experimental
results, which we did not report in this paper. Regarding the single-
noise condition, we found that the proposed NA-DNN-WF method
provided better results than the DNN and dNAT methods for each
noise type, in general. In addition, we examined the BNMF, DNN
and dNAT methods using the proposed GM-based clean speech es-
timation given by (12), and we found that the GM-based method
showed better results than the WF-based method. Comparing be-
tween the BNMF-GM, DNN-GM, dNAT-GM and NA-DNN-GM
methods, we observed that the proposed NA-DNN-GM method ex-
hibited the best performance, following similar patterns to those of
the results based on WF shown in Tables 1 to 4.

5. CONCLUSION AND FUTURE WORKS

We introduced a noise-adaptive feed-forward DNN for single-
channel speech enhancement. The goal was to better exploit in-
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Table 1. Average results for the matched single-noise condition
Input Eval. Noisy STSA BNMF DNN dNAT NA-DNN
SNR WF GM

-10 dB
PESQ 1.06 1.22 1.51 1.71 1.69 1.75 1.81
SDR -9.56 -6.49 -0.66 3.12 2.96 3.60 3.69
ESTOI 0.21 0.23 0.24 0.36 0.36 0.37 0.37

-5 dB
PESQ 1.35 1.55 1.85 2.05 2.03 2.09 2.17
SDR -4.83 -1.19 3.91 6.02 6.04 6.55 6.75
ESTOI 0.31 0.34 0.36 0.46 0.46 0.48 0.49

0 dB
PESQ 1.66 1.91 2.14 2.37 2.37 2.43 2.49
SDR 0.08 3.87 7.54 8.79 9.01 9.46 9.70
ESTOI 0.43 0.46 0.47 0.57 0.57 0.60 0.60

5 dB
PESQ 2.01 2.27 2.42 2.68 2.68 2.73 2.77
SDR 5.05 8.66 10.64 11.57 12.05 12.40 12.67
ESTOI 0.56 0.60 0.59 0.67 0.68 0.70 0.70

10 dB
PESQ 2.36 2.62 2.71 2.95 2.97 3.00 3.03
SDR 10.04 13.21 13.22 14.30 15.10 15.34 15.68
ESTOI 0.69 0.73 0.69 0.75 0.77 0.78 0.79

Table 2. Average results for the unmatched single-noise condition
Input Eval. Noisy STSA BNMF DNN dNAT NA-DNN
SNR WF GM

-10 dB
PESQ 1.04 1.16 1.39 1.48 1.51 1.55 1.68
SDR -9.59 -5.98 -3.53 1.65 1.73 1.99 2.60
ESTOI 0.16 0.20 0.19 0.30 0.31 0.32 0.33

-5 dB
PESQ 1.28 1.51 1.69 1.78 1.82 1.86 2.01
SDR -4.84 -0.64 1.49 4.45 4.65 4.94 5.61
ESTOI 0.27 0.32 0.31 0.40 0.41 0.43 0.43

0 dB
PESQ 1.58 1.90 1.97 2.11 2.14 2.18 2.32
SDR 0.07 4.37 5.63 7.17 7.50 7.87 8.58
ESTOI 0.41 0.46 0.44 0.51 0.53 0.54 0.55

5 dB
PESQ 1.93 2.27 2.25 2.42 2.47 2.50 2.62
SDR 5.04 9.07 9.32 10.02 10.53 10.91 11.65
ESTOI 0.56 0.62 0.57 0.63 0.64 0.66 0.67

10 dB
PESQ 2.29 2.63 2.56 2.71 2.77 2.78 2.89
SDR 10.04 13.55 12.52 12.93 13.76 13.99 14.79
ESTOI 0.71 0.76 0.69 0.72 0.74 0.75 0.78

dividual noise characteristics while training the spectral mapping
DNN. To this end, we employed noise-dependent adaptation vec-
tors, obtained based on the output of an auxiliary noise classification
DNN, to adjust the weights and biases of the spectral mapping DNN.
The parameters of the spectral mapping DNN, noise classification
DNN and the adaptation vectors were estimated jointly during the
training stage. In addition to the WF-based clean speech recon-
struction during the enhancement stage, we introduced a method
that combines a classical speech enhancement algorithm and the
DNN-based approach to further improve the enhanced speech qual-
ity. Experiments showed that using the proposed NA-DNN structure
provided better enhancement performance than the selected bench-
mark algorithms. Specifically, the GM-based reconstruction method
exhibited further improvements of the performance, especially for
the unseen noise types.

Finally, we comment on some interesting research avenue for
our future works. First, we will extend the proposed NA-DNN to a
LSTM-RNN to better capture the temporal dynamics. Second, we
will additionally employ a speaker-dependent feature (e.g., [37]) to
adjust the weights and biases of the spectral mapping DNN.
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