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ABSTRACT

In this paper, we introduce a spectral-domain inverse filtering ap-
proach for single-channel speech de-reverberation using deep con-
volutional neural network (CNN). The main goal is to better han-
dle realistic reverberant conditions where the room impulse response
(RIR) filter is longer than the short-time Fourier transform (STFT)
analysis window. To this end, we consider the convolutive trans-
fer function (CTF) model for the reverberant speech signal. In the
proposed framework, the CNN architecture is trained to directly esti-
mate the inverse filter of the CTF model. Among various choices for
the CNN structure, we consider the U-net which consists of a fully-
convolutional auto-encoder network with skip-connections. Exper-
imental results show that the proposed method provides better de-
reverberation performance than the prevalent benchmark algorithms
under various reverberation conditions.

Index Terms— single-channel speech de-reverberation, inverse
filtering, convolutive transfer function, deep convolutional neural
network, U-net

1. INTRODUCTION

When capturing speech from a talker in an enclosed space, a micro-
phone receives multiple delayed and attenuated copies of the origi-
nal speech signal, caused by the reflections from walls, ceiling and
floors, etc. [1]. The general objective of speech de-reverberation al-
gorithms is to remove such reflected components from a reverberant
speech signal while preserving the direct-path component to improve
its quality and intelligibility. Speech de-reverberation has been an at-
tractive research area and finds various applications, including mo-
bile telephony, hearing aid and automatic speech recognition. A con-
siderable amount of research efforts has been devoted to this prob-
lem in the past decades, leading to various approaches, such as spec-
tral subtraction [2, 3], linear prediction-based approahces [3]-[5] and
Kalman filtering [6]. However, these methods were originally intro-
duced by using minimal amount of a priori information about the
acoustic environment, specified by the room impulse response (RIR)
between the speech source and the microphone. Consequently, they
tend to provide limited de-reverberation performance under adverse
conditions, e.g., a high level of reverberation or time-varying RIR.

In recent years, deep learning (DL)-based algorithms with strong
nonlinear modeling capabilities have attracted enormous interest [7].
They have found diverse applications such as image classification
[8], automatic speech recognition [9], speech enhancement [10]-[12]
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and speech de-reverberation [13]-[20], where they have shown re-
markable performance. In general, supervised DL aims at estimat-
ing the nonlinear mapping function that relates the input features
to the target features. In [13], a fully-connected multi-layer per-
ceptron (MLP) is trained to directly predict the clean speech mag-
nitude spectrum from a noisy reverberant speech magnitude spec-
trum. This type of approach, which aims to uncover the nonlinear
relationship between the input and target features, has been further
extended using various deep neural network (DNN) architectures,
e.g., long short-term memory (LSTM) units [14], convolutional neu-
ral network (CNN) and generative adversarial network (GAN) [15].
Instead of directly estimating the clean speech features, more robust
masking-based approaches have been introduced, e.g., direct esti-
mation of a complex-valued ideal ratio mask (IRM) via MLP [16],
implicit estimation of a real-valued IRM based on the late reverbera-
tion power spectral density (PSD) obatined via MLP [17], and phase-
sensitive mask via GAN [18]. Some references focus on a feature-
aware training framework that utilizes additional features as input to
the DNN, such as reverberation time [19] or the late reverberation
PSD [20]. The above DNN-based de-reverberation algorithms are
implemented in the spectral-domain based on the assumption that
the RIR filter length is smaller than the short-time Fourier trans-
form (STFT) analysis window. In a real world scenario, however,
such an assumption is not valid and consequently, provide limited
de-reverberation performance.

In this paper, to overcome the above limitation, we introduce a
novel spectral-domain inverse filtering approach for single-channel
speech de-reverberation using a deep CNN. The main goal is to bet-
ter handle realistic reverberant conditions, i.e., where the RIR filter
length exceeds the STFT window length. To this end, we consider
the convolutive transfer function (CTF) model [21], where the re-
verberant speech spectrum is represented by convolving the clean
speech spectral coefficients with spectral filter coefficients along the
time frame dimension for each frequency bin. In the proposed frame-
work, we train the CNN architecture to directly estimate the inverse
filter of the CTF model. During the de-reverberation stage, the es-
timated inverse filter is applied to the reverberant speech spectrum
to obtain the clean speech spectrum. Among various choices for the
CNN structure, we use the U-net consists of a fully-convolutional
auto-encoder network with skip-connections [22]. Specifically, mo-
tivated by [11], we consider an online U-net structure for estimat-
ing the inverse filter for each time frame to better handle the time-
varying RIR conditions. Objective experimental results show that
the proposed method provides better de-reverberation performance
than the prevalent benchmark algorithms under various room rever-
beration conditions.

978-1-7281-6662-9/20/$31.00 c©2020 IEEE

Authorized licensed use limited to: McGill University. Downloaded on December 09,2022 at 13:44:52 UTC from IEEE Xplore.  Restrictions apply. 



2. REVERBERANT SIGNAL MODEL

Let us denote by yn the observed reverberant speech signal at the
discrete-time index n ∈ {0, 1, ..., N − 1}. In the single-channel
speech de-reverberation problem, by taking into account the convo-
lutive nature of the acoustic medium as represented by the RIR be-
tween the speech source and the microphone, the reverberant speech
signal can be written in the time-domain as

yn =

Q−1∑
q=0

hnqsn−q, (1)

where hnq is the time-varying RIR filter coefficient at time n and de-
lay index q ∈ {0, ..., Q− 1} and sn is the clean speech signal. Con-
sidering the propagation delay between the source and microphone,
the reverberant speech signal can be divided into three components:
direct-path, early reverberant and late reverberant signals. On this
basis, the signal model in (1) can be rearranged as

yn =

Qe−1∑
q=0

hnqsn−q︸ ︷︷ ︸
,yE

n

+

Q−1∑
q=Qe

hnqsn−q︸ ︷︷ ︸
,yL

n

, (2)

where yE
n is the sum of the direct-path and early reverberant signals

(hereafter referred to as the early reverberant signal for simplicity),
yL
n is the late reverberant signal, and Qe is the RIR filter length cor-

responding to early reverberation signal, i.e., the filter index separat-
ing the RIR into early and late reverberation components. It has been
shown that the late reverberation components are the major cause of
the degradation of the speech intelligibility [23]. In this paper, hence,
we focus on reducing the late reverberation components, while aim-
ing at recovering the early reverberant signal from the reverberant
speech. Such an algorithm is commonly referred to as late reverber-
ation suppression.

In audio and speech signal processing, the frequency-domain
representation is commonly used in order to better exploit spec-
tral characteristics, where a popular choice is the STFT. Numerous
spectral-domain speech de-reverberation algorithms assume that the
RIR filter length is much smaller than the STFT analysis window.
In this case, the effect of reverberation in the frequency domain
amounts to a simple multiplication of the room transfer function and
the clean speech spectral coefficients. Such an assumption, however,
is often not valid in a real world scenario and hence, may lead to
limited de-reverberation performance. To overcome this limitation,
we consider a more comprehensive CTF model [21]:

Ykl =

P−1∑
p=0

H∗
klpSk,l−p, (3)

where Ykl ∈ C and Skl ∈ C respectively denote the STFT coeffi-
cients of the reverberant and clean speech signals at the frequency
bin k ∈ {0, ...,K−1} and time frame l ∈ {0, ..., L−1}, Hklp ∈ C
is the time-varying CTF coefficient with frame delay index p ∈
{0, ..., P − 1}, and the superscript ∗ denotes complex conjugation.

3. PROPOSED DNN-BASED DE-REVERBERATION

In the proposed framework, we aim to directly estimate the inverse
filter of the CTF model based on an online U-net architecture. In
this section, after explaining the proposed inverse filtering approach,
we describe the online U-net structure and its application to de-
reverberation.

3.1. Proposed inverse filtering approach

The clean speech spectral coefficients, Skl, can be estimated via in-
verse filtering of the CTF model [24]:

Ŝkl =

Pd−1∑
p=0

W̃ ∗
klpYk,l−p, (4)

where W̃klp ∈ C is the complex-valued time-varying inverse filter
coefficient with frame delay index p ∈ {0, ..., Pd − 1}. In this pa-
per, we propose a novel inverse filtering method by applying two
modifications to (4) as follows. First, instead of estimating the clean
speech, we aim at estimating the early reverberant signal, since the
latter is sufficient to improve the speech intelligibility as mentioned
in Sec. 2. Furthermore, the suppression of late reverberation is not
affected by te misalignment between the observed reverberant and
the clean speech signal, which is caused due to the direct-path prop-
agation delay between the source and microphone. Consequently,
this provides a more robust de-reverberation performance. Second,
instead of estimating complex-valued spectral coefficients, we fo-
cus on estimating the spectral magnitudes, as the latter components
are knwon to contribute more towards speech intelligibility than the
phase components [25]1. In this way, we can also reduce the com-
putational cost compared to handling both the magnitude and phase
components in general. Hence, taking into account the above modifi-
cations, we propose the following inverse filtering model to estimate
the magnitude spectral coefficients of the early reverberant signal:

|Ŷ E
kl | =

Pd−1∑
p=0

Wklp|Yk,l−p|, (5)

where Wklp ∈ R is the real-valued time-varying inverse filter.

3.2. Online U-net architecture for inverse filtering

In the proposed framework, we estimate the inverse filter in (5) using
a CNN structure. The CNN transforms given input features through
a series of hidden layers, based on the convolution operation. Let
i = {1, ..., I} denote the hidden layer index, while i = 0 and
i = I + 1 indicate the input and output features, respectively. The
i-th hidden layer output is computed by convolving the (i − 1)-th
hidden layer output with a filter, also referred to as kernel, followed
by a non-linear transformation via an activation function. The con-
volution operation enables to extract local patterns of the given fea-
tures efficiently, as observed in adjacent time-frequency bins in the
STFT domain. Moreover, the CNN architecture generally requires
less parameters, i.e., the number of kernel coefficients, compared
to a fully-connected MLP and hence, is known to better handle the
over-fitting problem. The resulting hidden layer output can be repre-
sented by a Ci ×Ki ×Li tensor, where Ci, Ki and Li respectively
denote the number of channels, frequency bins and time frames for
the i-th hidden layer.

Among various choices for the CNN structure, we use the U-
net which consists of a fully-convolutional auto-encoder (CAE) with
skip-connections [22]. The CAE consists of two stages: an encoder,
which compresses the given features into a lower dimensional space
by capturing their key attributes; and a decoder, which expands the
compressed features (also known as bottleneck) features into a de-
sired feature space. The skip-connection method uses the i-th hidden

1As recent studies taking the phase components into account have shown
promising results, e.g., speech enhancement using complex U-net architec-
ture [26], such an approach remains an interesting avenue for our future work.
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Fig. 1. The architecture of the online U-net for the proposed inverse filtering-based speech de-reverberation.

layer output as an additional input feature for the (I − i)-th hidden
layer. The main advantage of using skip-connection is that it can
handle the vanishing gradient issue, which results in an ineffective
update of the lower hidden layer parameters due to an extremely
small gradient value while implementing error back-propagation.

In the propose framework, motivated by [11], we consider an
online U-net structure for estimating an inverse filter for each time
to better handle the time-varying RIR conditions. Regarding the in-
put features, we use the log power spectral coefficients (LPS) of the
reverberant speech, i.e., vkl , ln(|Ykl|2). In order to better handle
the temporal dependencies, we construct a multi-frame input feature
matrix, Vl ∈ RK×Lm , by concatenating feature vectors from Lm

successive time frames (e.g., [11]) as follows:

Vl = [vl−(Lm−1)/2, ..,vl, ...,vl+(Lm−1)/2], (6)

where vl = [vkl] ∈ RK and we consider an odd number for Lm.
The output of the online U-net is the inverse filter for the given l-
th frame, i.e., Wl = [Wklp] ∈ RK×Pd . Specifically, we align
the frame delay dimension of the inverse filter coefficients along the
CNN channel axis for a practical implementation, i.e., CI+1 = Pd

(a more detailed explanation will be presented in Sec. 4.2). The
online U-net structure for the proposed inverse filtering-based de-
reverberation is illustrated in Fig. 1. Note that the tensor form fea-
tures are expressed in a 3-D k × l × c coordinate system, where
k, l and c respectively indicate the frequency bin, time frame and
channel index.

During the proposed training stage, the online U-net parameters,
i.e., the kernel coefficients, are estimated by minimizing the mean-
square error (MSE):

E =
1

KL

K−1∑
k=0

L−1∑
l=0

(
|Y E

kl | − |Ŷ E
kl |
)2

, (7)

where |Ŷ E
kl | is computed using (5). During the proposed de-

reverberation stage, we estimate the complex-valued early rever-
berant spectrum by combining the magnitude components estimated
via (5) and the phase components from the reverberant speech, i.e.,

Ŷ E
kl =

(
Pd−1∑
p=0

Ŵklp|Yk,l−p|

)
ej∠Ykl , (8)

where j =
√
−1. Finally, the de-reverberated speech signal in the

time-domain is reconstructed by applying the inverse STFT to Ŷ E
kl ,

followed by the overlap-add method.

4. EXPERIMENTS

In this section, after describing the data sets and general methodol-
ogy, we present and discuss the experimental results.

4.1. Data sets

We conducted experiments using the clean speech from the TIMIT
corpus [27], where the sampling rate of all signals was 16 kHz.
Regarding the RIR, we employed two data sets: simulated RIRs
via the RIR generator [28], and real-measured RIRs from the
C4DM database [29]. The former are obtained based on the im-
age method for a given 3-D rectangular room, reverberation time
RT60, and source-microphone positions. The latter are collected
from GreatHall, Octagon and Classroom using the logarithmic sine
sweep method, where the measured reverberation time RT30 of all
rooms was approximately 2s (see [29] for more details). The speech
and RIR files were divided into three disjoint groups: i) training
data, used for estimating the U-net parameters; ii) validation data,
used for selecting tuning parameters such as the multi-frame length
Lm and inverse filter length Pd; and iii) test data, used during the
de-reverberation stage to evaluate the performance. For all data, the
reverberant speech signals were obtained by convolving the clean
speech signals with the RIRs.

Regarding the training data, we selected 4620 utterances from
the “train” set as the clean speech. For the simulated RIRs, we con-
sidered a room with size of 8× 6× 4 m (measured along Cartesian
coordinate axes), which will be referred to as Room 1, and reverbera-
tion times RT60 of 500, 750 and 1000 ms. We generated 15 RIRs for
each reverberation time by varying the source-microphone positions,
resulting in a total of 45 RIRs. For the real-measured RIRs, we se-
lected 50 RIRs from GreatHall, 50 RIRs from Octagon and 40 RIRs
Classroom, resulting in a total of 140 RIRs. Regarding the valida-
tion data, we selected 400 utterances from the “test” set as the clean
speech. We generated 10 RIRs from Room 1 with RT60 of 500,
750 and 1000 ms. We selected 5 RIRs from each one of GreatHall,
Octagon and Classroom.

Regarding the clean speech test data, we selected 192 utterances,
from the “test” set. For the simulated RIRs, we generated 10 RIRs
from Room 1 with RT60 of 500, 750 and 1000 ms. To evaluate the
performance for an unseen type of acoustic environment, we addi-
tionally generated 10 RIRs from a room with size of 6× 4× 3.5 m,
which will be referred to as Room 2, and reverberation times RT60

of 500, 750 and 1000 ms. For the real-measured RIRs, we selected
10 RIRs from each one of GreatHall, Octagon and Classroom. Be-
sides the above static RIR conditions, we additionally considered
time-varying RIR scenarios. To this end, we divided 10 RIRs into
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Table 1. Average results for the static simulated RIRs
Room RT60 Eval. Rev. DSM iIRM dIRM iFilt
type (ms)

R
oo

m
1

500
SDR 2.73 2.73 3.86 1.35 4.19

ESTOI 0.49 0.62 0.52 0.58 0.67
SRMR 2.69 2.98 2.63 2.41 3.59

750
SDR -0.56 1.11 1.27 0.14 2.25

ESTOI 0.33 0.52 0.38 0.50 0.55
SRMR 2.14 2.61 2.23 2.28 3.24

1000
SDR -2.52 -0.20 -0.59 -0.52 0.93

ESTOI 0.26 0.46 0.30 0.45 0.48
SRMR 1.79 2.39 1.97 2.24 3.01

R
oo

m
2

500
SDR 3.17 2.81 4.02 1.07 4.19

ESTOI 0.49 0.63 0.53 0.57 0.67
SRMR 2.77 3.03 2.72 2.41 3.66

750
SDR 0.58 1.83 2.45 0.52 3.12

ESTOI 0.36 0.55 0.41 0.53 0.59
SRMR 2.21 2.81 2.40 2.36 3.45

1000
SDR -1.64 0.43 0.48 -0.27 1.58

ESTOI 0.28 0.49 0.32 0.48 0.51
SRMR 1.83 2.56 2.08 2.29 3.18

two groups, allowing us to generate two different time-varying RIRs
scenarios, each comprised of 5 RIRs. Specifically, for each scenario,
the reverberant speech was obtained by convolving the given speech
utterance with one of the 5 RIRs in cycle for every 1s.

4.2. Methodology

Regarding the implementation of the proposed de-reverberation al-
gorithm, a Hamming window of 400 samples with 60% overlap
and 512-point fast Fourier transform (FFT) were employed for the
STFT analysis. We set the multi-frame length to Lm = 5, the
inverse filter length to Pd = 9, and the early reverberation fil-
ter lengths to Qe ∈ {32, 64, 128}. We designed the U-net using
I = 11 hidden layers with corresponding numbers of channels
[16, 16, 32, 32, 64, 64, 64, 32, 32, 16, 16] and CI+1 = Pd = 9 for
the output layer, based on the validation data. We used the rectified
linear units (ReLU) as the activation function for all hidden layers
and linear activation function for the output layer. Batch normal-
ization was applied to all hidden layers [30]. The U-net parameters
were updated iteratively via error back-propagation and the adaptive
moment estimation (Adam) optimizer [31], with the mini-batch size
of 32 for a total of 200 epochs. The initial learning rate was set
to 0.001, which decreased by 10% for every 10 epochs. We used
the kernel size of 9 with stride of 2 along the k-axis for all hidden
and output layers. To ensure the non-negativity of the estimated
spectral magnitudes of the early reverberant speech, i.e., |Ŷ E

kl | ≥ 0,
we applied ReLU to the inverse-filtered reverberant speech in (5). In
order to efficiently implement the proposed online U-net for inverse
filtering, we considered the 2-D convolution operation for all layers
as follows. For the given input feature matrix V ∈ RK×L, we
applied the kernels of sizes 9 × Lm to the input layer i = 0, and
9 × 1 to all hidden layers i ∈ {1, ..., I}, with stride of 2 along the
k-axis and 1 along the l-axis. The number of time frames was set to
Li = L for all i ∈ {0, 1, ..., I}, and the size of the output layer was
CI+1×KI+1×LI+1 = Pd×K ×L. The time-shifted magnitude
spectra of the reverberant speech were concatenated along the c-axis
to obtain a tensor of size C0 × K0 × L0 = Pd × K × L. The
estimated early reverberant magnitude spectrum given by (5) was
then computed by multiplying the above U-net input and output

Table 2. Average results for the time-varying simulated RIRs
Room RT60 Eval. Rev. DSM iIRM dIRM iFilt
type (ms)

R
oo

m
1

500
SDR -0.84 0.00 0.42 -0.34 0.73

ESTOI 0.48 0.62 0.52 0.58 0.66
SRMR 2.71 2.96 2.67 2.48 3.61

750
SDR -3.30 -1.01 -1.41 -1.04 -0.12

ESTOI 0.34 0.52 0.38 0.50 0.55
SRMR 2.10 2.61 2.18 2.31 3.23

1000
SDR -5.09 -2.72 -3.28 -2.62 -1.90

ESTOI 0.24 0.45 0.28 0.45 0.47
SRMR 1.74 2.37 1.94 2.21 2.97

R
oo

m
2

500
SDR -0.61 -0.46 0.16 -1.71 0.12

ESTOI 0.49 0.63 0.53 0.57 0.67
SRMR 2.76 2.97 2.69 2.37 3.58

750
SDR -2.92 -1.57 -1.30 -2.39 -0.90

ESTOI 0.32 0.53 0.38 0.51 0.56
SRMR 2.11 2.77 2.28 2.33 3.35

1000
SDR -3.96 -1.79 -1.94 -2.07 -1.01

ESTOI 0.26 0.47 0.31 0.46 0.49
SRMR 1.72 2.43 1.98 2.21 3.03

tensors, followed by summing along the c-axis.
To evaluate the performance of the proposed method, we im-

plemented several benchmark algorithms: i) direct estimation of the
clean speech magnitude spectral coefficients (DSM) [15], ii) implicit
estimation of a real-valued IRM based on the late reverberation PSD
obtained via DNN (iIRM) [17], and iii) direct estimation of a real-
valued IRM (dIRM) [32]. Specifically, we considered the LPS of the
early reverberant signal as the target output feature for DSM. The
target IRM in the dIRM method was constructed based on the well-
known Wiener filter, specified by the PSDs of the early and late re-
verberant signals, i.e., |Y E

kl |2/(|Y E
kl |2 + |Y L

kl |2). Although the iIRM
and dIRM methods were originally proposed using a fully-connected
MLP, we implemented them using the online U-net as explained in
Sec. 3.2 for fair comparison. Basic settings such as the STFT analy-
sis and synthesis, the U-net configuration, the input feature type (i.e.,
the LPS of the reverberant speech) and the mini-batch size were kept
identical when applicable.

To evaluate the de-reverberation performance, we considered the
source-to-distortion ratio (SDR) [33], extended short-time objective
intelligibility (ESTOI) [34] and speech-to-reverberation modulation
energy ratio (SRMR) [35] as the objective measures. The SDR is
computed in dB based on the source-to-interference ratio (SIR) and
source-to-artifact ratio (SAR), and has been widely used in audio
source separation and speech enhancement, e.g., [11, 12]. For a
given target source signal, in general, the interference refers to un-
wanted signal such as late reverberation components, whereas the
artifact refers to forbidden distortion. In speech de-reverberation ap-
plications, these measures can be interpreted as follows: the SIR
and SAR are proportional to the amount of late reverberation sup-
pression and inversely proportional to the clean speech distortion,
respectively, while the SDR measure the overall quality of the de-
reverberated speech signal. The ESTOI is computed based on the
spectral correlation between the short-time auditory filter-bank co-
efficients of the target clean speech and processed speech, and has
shown to be closely related to speech intelligibility of a human lis-
tener. The SRMR is a non-intrusive metric for speech quality and
intelligibility based on an auditory-inspired modulation spectral rep-
resentation of the speech signal. For all measures, a higher value
indicates a better result.
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Table 3. Average results for the static real-measured RIRs
Room Eval. Rev. DSM iIRM dIRM iFilt
type

GreatHall
SDR -2.36 -0.59 0.27 1.25 1.84

ESTOI 0.28 0.39 0.30 0.42 0.45
SRMR 1.38 2.36 2.14 2.50 3.32

Octagon
SDR -2.95 -0.84 0.64 1.02 1.62

ESTOI 0.29 0.39 0.30 0.42 0.46
SRMR 1.28 2.19 2.21 2.26 3.06

Classroom
SDR -4.08 -1.93 -1.96 -1.52 -0.16

ESTOI 0.19 0.36 0.23 0.36 0.40
SRMR 1.16 2.12 1.81 2.00 2.86

4.3. Results

The average results using the static and time-varying simulated RIR,
in case of an early reverberation RIR filter length of Qe = 32, are
shown in Tables 1 and 2, respectively. The proposed inverse filtering-
based approach is referred to as iFilt. The values in bold indicate the
best performance along the corresponding row. As we can see, the
propose method provided better de-reverberation performance than
the benchmark algorithms for all room types and both the static and
time-varying RIR conditions, in general. The only exception was
found from the SDR value for the time-varying RIR in Room 2 at
RT60 = 500 ms, where the iIRM method provided slightly better
result.

The average results using the static and time-varying real-
measured RIRs from the C4DM database, in case of an early rever-
beration RIR filter length of Qe = 32, are shown in Tables 3 and
4, respectively. As we can see, the proposed method provided the
best results for all room types as well as for static and time-varying
RIRs. Interestingly, the dIRM method provided better results than
the DSM and iIRM methods in general especially in terms of the
SDR value, in contrast to the results found when using the simulated
RIRs in Tables 1 and 2.

In the following, we comment on some additional experimental
results, which we did not report in this paper due to space limitation.
First, we observed that the proposed method provided better perfor-
mance than the benchmark algorithms for Qe = 64 and 128, fol-
lowing similar trend to those reported above for Qe = 32. Second,
we were able to verify that estimating the early reverberant signal
yE
n resulted in better de-reverberation performance than attempting

to estimate the clean speech signal sn.

5. CONCLUSION AND FUTURE WORKS

We introduced a spectral-domain inverse filtering approach for
single-channel speech de-reverberation using a DNN. The main goal
was to better handle realistic reverberant conditions where the RIR
filter is longer than the STFT analysis window. To this end, we
considered the CTF model for the reverberant speech signal. In the
proposed framework, we aimed at estimating the magnitude spectral
coefficients of the early reverberant speech signal via inverse filter-
ing of the CTF model. The inverse filter was estimated based on the
online U-net architecture, which consists of a fully-convolutional
CAE with skip-connections. We conducted experiments using both
the simulated and real-measured RIRs. Experiments showed that the
proposed method provides better de-reverberation performance than
the prevalent benchmark algorithms under various reverberation
conditions, i.e., different levels of reverberation time, unseen type of
room environment, static and time-varying RIR conditions, and for

Table 4. Average results for the time-varying real-measured RIRs
Room Eval. Rev. DSM iIRM dIRM iFilt
type

GreatHall
SDR -5.42 -3.02 -2.06 -1.57 -1.37

ESTOI 0.23 0.36 0.26 0.38 0.42
SRMR 1.37 2.41 2.12 2.41 3.33

Octagon
SDR -4.59 -2.63 -1.81 -0.70 -0.45

ESTOI 0.26 0.37 0.28 0.40 0.44
SRMR 1.14 2.05 2.00 2.20 2.91

Classroom
SDR -6.07 -3.98 -4.19 -3.87 -2.54

ESTOI 0.19 0.36 0.22 0.36 0.40
SRMR 1.14 2.10 1.39 1.99 2.84

the simulated and real-measured RIRs.
Several avenues remain opened for future research. First, we

can extend the proposed method to a complex-valued U-net archi-
tecture to handle the phase components [26]. Second, we can incor-
porate additional information, such as reverberation time [19] or late
reverberation PSD [20], into the proposed inverse filtering frame-
work. Besides the above avenues, which are mainly for further im-
proving the speech quality of the reverberant speech, it would also
be of interest to evaluate experimentally the effects of the proposed
de-reverberation algorithm when used as a front-end for automatic
speech recognition.
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