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ABSTRACT

Voice Activity Detection (VAD) aims to distinguish, at a given time,
between desired speech and non-speech. Although many state-of-
the-art approaches for increasing the performance of VAD have been
proposed, they are still not robust enough to be applied under adverse
noise conditions with low Signal-to-Noise Ratio (SNR). To deal with
this issue, we propose a novel transformer-based architecture for
VAD with reduced computational complexity by implementing ef-
ficient depth-wise convolutions on feature patches. The proposed
model, named Tr-VAD, demonstrates better performance compared
to baseline methods from the literature in a variety of scenarios con-
sidered with the smallest possible number of parameters. The results
also indicate that the use of a combination of Audio Fingerprinting
(AFP) features with Tr-VAD can guarantee better performance.

Index Terms— Voice activity detection, transformer-based ar-
chitecture, audio fingerprinting

1. INTRODUCTION

Voice Activity Detection (VAD) refers to a family of methods that
that can determine the presence or absence of human speech in a
signal at a given time. It often serves as an important preproces-
sor for many speech-based applications, including speaker identifi-
cation, speech recognition, keyword spotting and hearing aids [1,2].
The primary difficulty in developing robust VAD systems lies in dis-
tinguishing speech from a variety of stationary and non-stationary
noises, especially in low SNR environments. Early VAD studies fo-
cused on power calculations in the time domain [3,4]. Subsequently,
further methods were developed that rely on the use of classical or
handcrafted features of speech signals, such as Zero Crossing Rate
(ZCR) [5], spectral or cepstral features [6, 7], higher order statis-
tics [8] and pitch detection [9]. The Likelihood Ratio Test (LRT),
which assumes prior knowledge of the speech signal and noise dis-
tributions, is wildly used in VAD [10].

Unlike conventional methods which seek to exploit underlying
properties and modeling of acoustic features, data-driven machine
learning methods, such as linear discriminant analysis [11], Sup-
port Vector Machines (SVM) [12], sparse coding [13], have shown
good classification results on the VAD task. These methods pro-
vide additional flexibility in incorporating prior knowledge, such as
manually labeled data and fusing multiple acoustic features. Rec-
ognizing the effectiveness of data-driven methods, several VAD
approaches based on deep learning model, including Deep Neu-
ral Networks (DNN) [14, 15], Deep Belief Network (DBF) [16],
Convolutional Neural Network (CNN) [17] and Recurrent Neural
Network (RNN) [18, 19] which demonstrate better performance
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over conventional methods. More recently, there has been a growing
interest in the use of transformer-based architectures for natural
language processing (NLP) [20], computer vision (CV) [21, 22] and
automatic speech recognition (ASR) [23]. These architectures have
demonstrated state-of-the-art performance in many tasks. Typically,
while RNNs have difficulty in learning long-term dependencies,
transformer-based approaches overcome the issue with the use of
self-attention mechanism.

Inspired by these recent methods, we herein propose a novel
transformer-based DNN architecture for VAD, called Tr-VAD,
which performs efficient convolutions on feature patches. Com-
pared to the original transformer approach in [20] which uses self-
attention mechanism to capture global dependencies, the proposed
model splits the acoustic features into non-overlapping patches and
applies depth-wise convolutions to further introduce locality to the
transformer architecture. To the best of our knowledge, this is the
first attempt to apply transformer-based architecture to the VAD
task. The performance of the proposed Tr-VAD is evaluated by
means of F1-score and Detection Cost Function (DCF) metrics, and
compared to other state-of-the-art approaches. Our experiments
show that the proposed method achieves superior performance in
almost all scenarios considered, with the fewest possible number of
parameters.

The rest of the paper is organized as follows. Section 2 briefly
describes the acoustic features used in our study. Section 3 develops
the architecture of the proposed Tr-VAD model. Section 4 presents
the experimental setup and compares the performance of different
methods. This is followed by a conclusion in Section 5.

2. FEATURE EXTRACTION

In this section, we briefly discuss the preprocessing steps needed for
the extraction of the acoustic features used in this work. The input
noisy speech signal x[n] is modeled as:

x[n] = s[n] + w[n] (1)

where s[n] denotes the clean speech signal, w[n] denotes an additive
background noise, and n ∈ Z is the discrete-time index. Process-
ing is implemented in the frequency domain by applying the Short-
Time-Fourier-Transform (STFT) to x[n]:

X(t, f) =

N−1∑
n=0

x[n+ tLhop]h[n]e
−j2πfn/N (2)

where t is the frame index, Lhop is the frame advance, f ∈
{0, 1, 2, ..., N/2} is the frequency bin index, N is the window
size and h[n] is a window function.

The power of the transformed output |X(t, f)|2 is warped ac-
cording to the Mel scale using a bank of spectral shaping filters, in
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order to adapt the frequency resolution to the properties of the hu-
man ear. The logarithm function is then applied to the output of each
filter, yielding

FB(t, b) = 20 log10{
hb∑

f=lb

ub(f) |X(t, f)|2} (3)

where b ∈ {0, 1, ..., B − 1} is the filter index, B is the num-
ber of filters in the filter bank, ub(f) is the spectral shaping
filter of the bth subband, and lb and hb are the lower and up-
per frequency limits of ub(f), respectively. The vector of log-
Mel filter bank features at the current tth frame is denoted as
FBt = [FB(t, 0), ...,FB(t, b), ...,FB(t, B − 1)].

The Discrete Cosine Transform (DCT) – Type III [24] is applied
to the log-Mel filter bank features to obtain the Mel-Frequency Cep-
stral Coefficients (MFCC):

MFCC(t, b) =
1

20

√
2

B

B−1∑
b=0

FB(t, b) cos
(pπ
B

(b− 0.5)
)

(4)

We define the MFCC feature vector of the current data frame as:
MFCCt = [MFCC(t, 0), ...,MFCC(t, B − 1)].

The Spectral Subband Centroid (SSC) [25] is often used to mea-
sure the central frequency of a subband spectrum. To calculate the
SSC for the bth shaping filter, a weighted average is applied as fol-
lows:

SSC(t, b) =

∑hb
f=lb

f u′
b(f) |X(t, f)|2∑hb

f=lb
u′
b(f) |X(t, f)|2

(5)

where u′
b(f) is the subband filter. For simplicity, the same set

of filters ub(f) is used in this work for the calculation of the
MFCC and SCC features. For efficient training, we use the
Normalized SSC (NSSC), taking values in [−1, 1] and computed
as: NSSC(t, b) = (SSC(t, b) − (hb − lb))/(hb − lb). Sim-
ilarly, the NSSC feature vector at the tth frame is defined as:
NSSCt = [NSSC(t, 0), ...,NSSC(t, B − 1)].

The Audio Fingerprinting Combination (AFPC), a combination
of MFCC and NSCC, has demonstrated superior performance for
speech enhancement when used as input to a generative adversarial
network (GAN) [26]. In our work, we shall make use of a similar
concatenation of features:

AFPCt =
[
MFCCt,∆MFCCt,∆

2MFCCt,
NSSCt,∆NSSCt,∆

2NSSCt

] (6)

where ∆ and ∆2 are the delta and double-delta operations, respec-
tively.

3. PROPOSED TRANSFORMER-BASED VAD
ARCHITECTURE

In this section, we propose a novel transformer-based VAD method,
called Tr-VAD, which splits the acoustic features into patches and
applies depth-wise convolutions, thereby allowing the model to pre-
dict the presence or absence of speech more efficiently. The pro-
posed Tr-VAD model consists of a feature embedding layer, several
transformer encoder blocks, and a classifier as illustrated in Fig. 1.
These components are described in more details in the following sec-
tions.

Fig. 1. Architecture of the proposed model.

3.1. Feature Embedding

Let {Xt, y
truth
t

}T−1

t=0
represents the acoustic data available for train-

ing the model, where Xt ∈ RD is the acoustic feature vector at the
tth frame, ytruth

t ∈ {0, 1} is the corresponding true VAD label, and
T is the total number of frames. The acoustic data in each frame is
first expanded by using L = 2k+1 neighboring frames with relative
index l ∈ T = {−ku,−(k − 1)u, ...,−u, 0, u, ..., (k − 1)u, ku},
where integer u is the step size, and k determines the number of
neighboring frames. The expanded data is represented by:

X′
t = {Xt+l : l∈T }∈RL×D,ytruth

t = {ytruth
t+l : l ∈ T }∈RL

(7)
The expanded feature vectors are used as input to the embed-

ding module, which consists of a Fully Connected Network (FCN)
followed by a 1-D convolutional layer. Compared to absolute posi-
tional embedding strategies (such as sinusoid positional embedding
and learnable 1-D positional embedding), convolutional embedding
can extract relative positional information and learn useful short-
range spectral-temporal patterns [23], which are quite important for
speech related models where the local audio signals are highly corre-
lated. We denote the output of the embedding layer as X̄1

t ∈ RL̃×D̃ ,
where L̃ and D̃ denote the temporal and feature dimensions, respec-
tively.

3.2. Depth-Wise Transformer Blocks with Feature Patches

Each one of the Ntrans depth-wise transformer blocks in Fig. 1
includes two normalization layers, a Multi-Headed Self Attention
(MHSA) module, and a Feed-Forward Network (FFN), configured
as shown in Fig. 2. Let the input features of the ith transformer
block be denoted as X̄i

t ∈ RL̃×D̃ , where i ∈ {1, 2, ..., Ntrans}. As

Fig. 2. Block diagram of the ith transformer block.

illustrated in Fig. 2, the layer normalization is applied to the feature
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matrix X̄i
t, resulting in the normalized feature matrix X̃i

t ∈ RL̃×D̃

which is passed to the MHSA module whose structure is described
below.

(a) Block Diagram of the proposed MHSA module.

(b) Internal Structure of MHSA in Tr-VAD.

Fig. 3. Multi-headed Self Attention Module

Multi-Head Self Attention with Feature Patches: The internal
structure of the MHSA module is illustrated in Fig. 3(a). The input
X̃i

t is first split into patches by decomposing the temporal dimension
L̃ and feature dimension D̃ are split into non-overlapping P1 × P2

pieces, as represented by:

X̃i
t,S = Split(X̃i

t) ∈ RDsplit×P1×P2 (8)

where integer P1 and P2 specify the split factors, Split(·) stands
for the split operation, and Dsplit = L̃

P1
× D̃

P2
. In contrast to ear-

lier works where MHSA is applied along a single dimension, here
we propose to extend this concept to both temporal and feature di-
mensions. This new scheme allows the model to attend to multiple
frames and feature information at different positions. In contrast,
the Swin Transformer [22] uses shifted windows to allow commu-
nication among different patches and to increase the receptive field.
In our case however, the acoustic features already include informa-
tion from neighboring frames which carries contextual redundancy;
hence the use of shifted widow is not necessary.

Depth-Wise (DW) separable convolution blocks [27] are used
in this work to obtain the attention matrices. The DW convolution
emphasizes local information which is missing in the FFN-based
transformer network. Therefore, the DW convolution-based trans-
former is cable of modelling both local (short-range) and global
(long-range) dependencies with reduced parameters and computa-
tional cost. Each block consists of a DW convolutional layer, a

batch normalization layer, and a 1 × 1 Point-Wise (PW) convolu-
tional layer. As indicated in Fig. 3(b), we use a stride of 2 when
applying convolution to the feature matrix X̃i

t,S . Letting DW(·)
denote the DW convolution operation, the mapped feature matrix

DW(X̃i
t,S) ∈ RDsplit×

P1
2

×P2
2 is then reshaped into X̃i

t,DW:

X̃i
t,DW = Reshape

(
DW

(
X̃i

t,S

))
∈ R

L̃
P1

× D̃
P2

×P1P2
4 (9)

where Reshape(·) is the reshape operation. Let Q, K and V repre-
sent the query, key and value, respectively, as obtained from matrix
X̃i

t,S by using different convolution weights in Eq. (9). The scaled
dot-product attention operation is applied as follows:

X̃i
t,att = Softmax

(
QTK√

Nd

+Bp

)
·V ∈ R

L̃
P1

× D̃
P2

×P1P2
4 (10)

where · is the element-wise product, and Bp ∈ R
L̃
P1

× D̃
P2

× D̃
P2 is a

learnable bias term. Since we use a stride of 2 for the queue, key,
and value mapping, the size of the temporal and feature dimensions
are reduced by a factor of 2, and the computational cost for self-
attention operation is thus reduced by a factor of 43. Such strategy
comes with negligible performance degradation as the input features
contain redundant information.

Referring to the Fig. 3(b), the attention output X̃i
t,att is reshaped

and then passed to a linear transformation module which includes an
1-D convolutional layer and an FCN.

Feed-Forward Network with Feature Patches: Similar to the
MHSA module, convolution-based FFN are used in the proposed
method. The FFN firstly splits the input features into P1 × P2

patches, then sequentially applies a 1 × 1 PW convolution, a 3 × 3
DW convolution block and another 1×1 PW convolution to the fea-
ture patches. Finally, the shape of the feature patches are restored.

3.3. Classifier

Recall from Fig.1 that the output of the transformer encoder blocks
is finally fed to the classifier. As illustrated in Fig.4, the classifier
processes feature patches by applying a DW convolution block, and

the output feature matrix Xt,c ∈ RDsplit×
P1
2

×P2
2 is then reshaped to

X̃t,c ∈ R
P1
2

×
P2Dsplit

2 . The following two FCNs probe the hidden
information and compress the last feature dimension to 1. Finally,
the output of the FFNs is passed through a sigmoid activation to pre-
dict the probability of the presence of speech, represented by com-

pressed vector yt ∈ R
P1
2 = RL, since in our work, P1 = 2L. The

soft prediction corresponding to the tth frame, ŷt, can be computed
by aggregating all the soft predictions yt relative to frame t across
l ∈ T . The final decision label ȳt is obtained by comparing the soft
prediction ŷt with a threshold θT:

ŷt =
1

L

∑
l∈T

yt+l, ȳt =

{
1, if ŷt ≥ θT
0, otherwise (11)

where yt+l is the (t+ l)th component of yt.
For training the proposed transformer based VAD network, the

cross entropy loss is calculated based on the classifier output:

L =−
T−ku−1∑

t=ku

∑
l′∈T

(
ytruth
t+l log yt+l+

(
1− ytruth

t+l

)
log (1− yt+l)

)
(12)

where ytruth
t+l is the lth component of ground truth label ytruth

t .
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Fig. 4. Architecture of the Classifier.

4. RESULTS

In this section, we first describe our experimental setup and then
present the comparative results of different methods.

4.1. Experimental Setup

The TIMIT training dataset [28] is used to train and validate the pro-
posed and baseline models, with 95% of speech utterances used for
training, and 5% for validation. The TIMIT dataset has ground truth
labels. To balance the testing conditions, a 1-second silence section
is added before and after each utterance. Eight types of noises (bab-
ble, F16, destroyer, M109, Volvo, white, and two factory noises)
from the NOISEX-92 dataset [29] are used to corrupt the training
set, with SNR levels of -10, -5, 0, 5, 10 dB. The TIMIT test dataset
is used in the test phase, where as above, a 1-second silence is added
before and after each utterance. All 8 types of unseen noises from
the AURORA noise dataset [30] are used to corrupt the clean speech,
with SNRs of -5, 0, 5 and 10 dB.

Each utterance from the training and test dataset, with sampling
rate 16kHz, is framed by applying a 32 ms Hanning window with
16 ms window shift. Accordingly, the size of the STFT used for
spectral analysis in (2) is set to N = 512. The Tr-VAD method em-
ploys the AFPC features as discussed in Section 2.1. Specifically,
16 coefficients are computed for each one of MFCC, ∆MFCC,
∆2 MFCC, NSSC, and ∆NSSC, resulting in a total of 80 AFPC
features. Parameters k, u, and L needed to construct the expanded
data set, are chosen as 4, 4, and 9, respectively. For training, a mini-
batch approach with a batch size of 512 is applied, along with the
AdamW optimizer [31] using a cosine decay learning rate scheduler
and 5000 iterations of linear warm-up. An initial learning rate of
10−3, a weight decay of 0.05 and a final learning rate of 5 × 10−6

after 4 × 105 iterations are used. The Gaussian Error Linear Unit
(GELU) [32] is chosen as the activation function. Model parameters
D, L̃, D̃, P1, P2, Dsplit, θT and Ntrans are set to 80, 54, 162, 18,
18, 27, 0.5 and 6, respectively, while the dropout rate is 0.1. Other
model parameter settings can be found in Table 1.

Tr-VAD is compared with the following baseline methods:
• rVAD [9]: Unsupervised VAD method exploiting pitch informa-
tion by calculating the a posteriori SNR weighted energy difference.
• Adaptive Contextual Attention Model (ACAM) [19]: Original
attention-based VAD model which only applies temporal attention.
• Spectro-Temporal Attention Model (STAM) [15]: Extended
attention-based VAD model which exploits both spectral and tem-
poral information.
• DCU-10 [33]: DNN-based speech enhancement model including
10 complex layers, which we extend to predict VAD labels. That
is, the estimated complex ideal ratio mask is averaged along the fre-
quency axis and the magnitude of the resulting average is compared
with a threshold.

Table 1. Parameter setting for the Proposed Tr-VAD method

Layer Name Units In Units Out Kernel Stride
Size Size

FCN in Embedding 80 324
1-D Conv. in Embedding 9 54 5 2

DW in MHSA 27 27 (3, 3) (2,2)
1-D Conv. in MHSA 27 54 1 1

FCN in MHSA 81 162
1st 2-D Conv. in FFN 27 108 (1, 1) (1, 1)

DW in FFN 108 108 (3, 3) (1, 1)
2nd 2-D Conv. in FFN 108 27 (1, 1) (1, 1)

DW in Classifier 27 27 (5, 5) (2, 2)
1st FCN in Classifier 243 486
2nd FCN in Classifier 486 1

Table 2. Comparison of F1-Score and DCF versus SNR
SNR Metric rVAD DCU-10 ACAM STAM Tr-VAD

-5 dB Fl 79.5 86.4 85.9 97.7 98.6
DCF 8.3 7.8 6.2 1.5 0.8

0 dB FI 86.0 89.8 90.7 98.0 98.8
DCF 5.8 5.7 3.7 1.3 0.7

5 dB F1 92.4 92.3 95.4 98.3 99.0
DCF 3.9 4.0 2.6 1.2 0.6

10 dB Fl 94.0 94.2 96.0 98.4 99.1
DCF 3.4 2.8 2.3 1.1 0.6

A default parameter setting is employed for rVAD, while other meth-
ods are trained using the same approaches as proposed in the above
references.

For comparison, the F1-score and the Detection Cost Function
(DCF) [8] are selected as evaluation metrics. The F1-score is a com-
mon evaluation index for binary classification problems, defined as:

F1 = 2TP /(2TP+FP+FN) (13)

where TP, FP, FN represent the number of true positive, false pos-
itive, and false negative cases, respectively. The DCF reflects the
wrong performance of the model and is defined as:

DCF = (1− β) PFN +β PFP (14)

where PFP is the rate of FP, PFN is the rate of FN, and β is a weight
set to 0.25 in order to penalize missed speech frames more heavily.
Higher/lower values of the F1-score and DCF metrics indicate better
performance.

4.2. Results and Discussion

Table 2 shows the averaged results of F1-score and DCF on TIMIT
dataset for different SNR levels. It is clear that DNN-based methods
generally achieve better results than rVAD, and the attention-based
methods, ACAM and STAM, further improve the performance. The
proposed Tr-VAD outperforms all baseline methods across all SNR
levels.

Table 3 shows the size of different models and the average run
time for processing a 10-second utterance. Experiments were con-
ducted on a platform equipped with Intel Core i7-10700F CPU and
NVIDIA GeForce RTX 2070 SUPER GPU. The results validate the
efficiency of the proposed Tr-VAD with 32% less parameters and
38% faster execution time.
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Table 3. Number of Parameters and Average Running Time
Methods rVAD DCU-10 ACAM STAM Tr-VAD

Parameters NA 2808K 957K 559K 376K
Run Time (ms) 86 251 1263 132 82

Fig. 5. Comparison of the hard VAD decisions made by different
methods.

Fig. 5 compares the hard VAD decisions predicted by different
methods on a representative utterance. The clean signal sample is
chosen from the ‘test clean’ dataset of LibriSpeech [34]. The tran-
script of the 4.9-second clean signal is: “He began a confused com-
plaint against the wizard, who had vanished behind the curtain on
the left”. The top sub-figure shows the waveform of the clean sig-
nal and the true VAD label, while the remaining sub-figures show
the hard VAD decisions obtained by applying different methods to
a noisy version of the utterance. The latter is obtained by adding
the ‘airport’ noise from the AURORA noise corpus to the clean sig-
nal, with the SNR set to 0 dB. It can be seen from Fig. 5 that the
proposed Tr-VAD accurately predicts the start and end points of the
utterance, and can detect as well the non-speech part (less than 0.2
second) near the middle.

To validate the effectiveness of each part of the proposed
method, we further conduct ablation studies on it. Specifically,
five different variations of Tr-VAD are used as follows:

• Tr-VAD0: Baseline Tr-VAD using AFPC feature, DW-based FFN
and DW-based MHSA.

• Tr-VAD1: Similar to Tr-VAD0 but using Log-Mel filter bank fea-
tures instead of AFPC features.

• Tr-VAD2: Similar to Tr-VAD0 but using MFCC features instead
of AFPC features.

• Tr-VAD3: Similar to Tr-VAD0 but using AFPC features but the
FFN is FCN based.

• Tr-VAD4: Similar to Tr-VAD0 but using the AFPC features but
the MHSA is FCN based.

As shown in Table 4, the baseline Tr-VAD using the AFPC fea-
tures exhibits a 0.4% increase in F1-score compared to the mod-
ified Tr-VAD1 using instead the Log-Mel filter bank features
and Tr-VAD2 using MFCC features. With the use of FCN-based
FFN, Tr-VAD3 achieves similar F1 score and DCF as the baseline
Tr-VAD0, but requires about 4 times more parameters. Tr-VAD4,
which uses the original FCN-based MHSA in [20], only achieves a

Table 4. Ablation Study on the Proposed Method
Evaluation

Metrics Tr-VAD0 Tr-VAD1 Tr-VAD2 Tr-VAD3 Tr-VAD4

# Parameters 376K 376K 376K 1527K 901K
F1 Score 98.9 98.5 98.5 98.8 98.9

DCF 0.7 0.8 0.9 0.7 0.6

Table 5. Influence of Neighboring Frames on the Proposed Method
Evaluation Metrics u = 4 u = 3 u = 2

F1 Score 98.9 98.8 98.6
DCF 0.7 0.7 0.8

minor improvement of 0.1% on DCF but requires more than twice
as many parameters

The influence of neighboring frames on the performance of the
proposed Tr-VAD method is also studied. In the above experiments,
L = 2k + 1 = 9 frames are used, where each frame is separated by
u = 4, however u may be too large for real-time applications, as the
resulting window covers 2ku = 16 frames from the past and future
signal streams, which may result in high latency in some scenarios.
As shown in Table 5, by reducing the step size u and keeping the
total number of frames L and k the same, it becomes easier to im-
plement Tr-VAD in real-time applications, at the cost of slight loss in
performance. It is noteworthy that with k = 4, u = 2, resulting in 8
neighboring frames, the Tr-VAD still outperforms the STAM model
which requires 19 neighboring frames in Table 2.

5. CONCLUSION

In this paper, a novel transformer-based VAD model, referred to as
Tr-VAD, was proposed and validated. The proposed approach re-
duces computational complexity by splitting the acoustic features
into patches and applying depth-wise convolutions, thereby allow-
ing the model to predict the presence or absence of speech more
efficiently. The proposed model consists of a feature embedding
layer, several transformer encoder blocks, and a classifier. The ex-
perimental results show that compared to state-of-the-art benchmark
approaches, our proposed Tr-VAD method achieves better results in
term of F1 score and DCF under different noise conditions, and this
with much fewer parameters and significantly faster execution. The
results also indicate that the use of a combination of AFPC features
with Tr-VAD can guarantee better performance.
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