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Abstract—Phased array radars use space time adaptive pro-
cessing (STAP) to detect targets in angle, range, and speed using
an adaptive weight vector that depends mainly on the covariance
matrix of the cell under test (CUT). This covariance matrix is
estimated from the secondary cells surrounding the CUT under
the assumption of homogeneous clutter and noise background.
However, these secondary cells are often contaminated by multi-
ple discrete interferers, targets or combination thereof, which
degrade the estimation of the CUT’s covariance matrix and,
in turn, the detection performance. In this paper, we address
the problem of detecting the nonhomogeneous secondary cells
that need to be excluded from the adaptive weight calculation.
We introduce a nonparametric and covariance-free alternative
to the normalized adaptive matched filter (NAMF) test that
does not need the tedious estimation process of the covariance
matrix matrix of secondary cells nor prior knowledge about
the interference distribution. Consequently, the computational
complexity of the weight vector is reduced, which is of a
great importance for real-time operation of radar systems. The
equivalent robust performance of the proposed test compared
to the NAMF test is demonstrated through simulations under
different clutter scenarios and operation conditions.

Index Terms—STAP, NAMF, GIP, covariance matrix estima-
tion, K-distribution, robust statistics, depth function, NHD, SIRV,
clutter.

I. INTRODUCTION

Radar systems detect targets in range, speed, and azimuth
angle. The range (fast time) domain represents the time
samples received within the radar pulse repetition interval
(PRI). To estimate the target Doppler (speed), coherent pulsed
radars transmit a number of coherent pulses that together form
a coherent pulse interval (CPI). In phased array radars, each
element in the antenna array transmits the same number of
coherent pulses. The space time adaptive processing (STAP)
detector scans the signal in the range dimension and vectorizes
the data matrix in the Doppler-angle domains. For each range
cell (vector), STAP forms a weight vector depending on the
covariance matrix of the cell under test (CUT). However, this
covariance matrix is unknown in practice and it is estimated
from the surrounding cells, known as the secondary or training
cells [1].

The estimation of the CUT covariance matrix from the
secondary cells is based on the assumption that the latter
are homogeneous or (ideally) independent and identically
distributed (iid). However, the homogeneity assumption is
hardly met in real scenarios due to the presence of discrete
scatterers, signal-like jammers [2], [3], multiple targets, or
combinations of them. To tackle this problem, the nonho-
mogeneity detector (NHD) has been introduced to dentify
nonhomogeneous secondary cells to be subsequently censored

from the CUT covariance matrix estimation [4].
The work in [5] proposed a test known as the generalized

inner product (GIP), based on the fact that the surrounding
secondary cells can be considered homogeneous if they share
the same covariance matrix up to a scalar. Later, the adaptive
matched filter test (AMF) introduced in [6] has been applied
in [7] to detect nonhomogeneous cells in Gaussian clutter
environments. A normalized version of the AMF test (NAMF)
was introduced in [8] and was extended to non-Gaussian
clutter distributions in [9], where it has been shown to be the
most robust NHD. Both of the GIP and the NAMF tests depend
on estimating the matrix of the secondary cells. Based on the
used covariance matrix estimator, the test is considered to be
parametric or nonparametric. A covariance-free NHD that is
equivalent to the GIP was introduced in [10] for Gaussian
clutter. However, it is known that the GIP test is not robust
especially in non-Gaussian clutter scenarios [9].

In this paper, we are concerned with the problem of de-
tecting the nonhomogeneous secondary cells under a general
clutter distribution model, including Gaussian and compound
Gaussian distributions. We introduce a nonparametric and
covariance-free NHD test that is equivalent (or better) in
performance to the robust NAMF test, significantly reduces
the computational burden. Indeed, the proposed NHD test does
not require any prior knowledge of the distribution of the
clutter nor estimating the covariance matrix (or its inverse)
for secondary cells.

The paper is organized as follows: Section II provides the
mathematical background about STAP and the clutter signal
model, while Section III review the nonhomogeneity detection
problem. The proposed nonparametric NHD is introduced in
Section IV. The results of comparative performance evaluation
for the proposed detector and the NAMF are presented and
discussed in V. The work is concluded in Section VI.

II. SIGNAL MODEL

A. STAP Signal Model

Consider a pulsed Doppler radar system using a uniform
linear array (ULA) antenna of N elements that are spaced at
a distance d apart. The radar transmits from each antenna ele-
ment M coherent pulses at a constant PRI T . The transmitted
signal is assumed to be narrowband, that is, its bandwidth B
satisfies c/B � Nd where c is the speed of light [1]. The
signal transmitted from each antenna element is expressed as

s(t) =

M−1∑
i=0

u(t− iT ) (1)
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where u(t) is the complex envelope of the transmitted signal.
The time delay corresponding to the radar maximum unam-
biguous range is T , hence, the total number of range cells in
a single PRI is

L = TB (2)

Therefore, the CPI of a phased array doppler radar can be
visualized as an L ×M ×N data cube. For each range cell,
the observed data defines an M × N matrix containing the
received signal from each PRI and each antenna element.
STAP vectorizes data matrix so obtained for each range cell,
resulting in a vector z ∈ C

J , where J = MN . In this work,
we consider a binary hypothesis testing whereby, for a given
secondary cell,

H1 : z = xt + c+ n (3a)
H0 : z = c+ n (3b)

where H0 and H1 are the null and alternative hypotheses, xt

is the received signal from a target or a discrete interferer, c
is the clutter signal, and n is the spatio-temporally additive
white Gaussian noise. The received target signal is expressed
as

xt = as (4)

where a is the complex amplitude and s is the spatio-temporal
target steering vector assumed to be known and normalized
such that ‖s‖ = 1.

For a given CUT, a STAP detector must decide whether it
follows the hypothesis H1 or H0. To achieve this, covariance-
based STAP detector estimates the covariance matrix of the
CUT from from the data in surrounding, or secondary cells,
and then applies a weight vector whose calculation depends
on the estimated CUT covariance matrix. For the robust
covariance matrix estimation, the secondary cells should be
iid or homogeneous, a condition which is not satisfied in real
scenarios.

B. Spherically Invariant Random Clutter Model

In this paper we are concerned with the coherent clutter
model where both the in-phase and quadrature components
of the received clutter signal are processed [11]. The clutter
at each range cell can be modeled as a product of two
components as

c = vy (5)

where y ∈ C
J has a complex Gaussian distribution with

probability density function (PDF) CN (0,Σ) with zero mean
and covariance Σ ∈ C

J×J , and v is a positive scalar random
variable with PDF f(v), statistically independent from y. In
this case, the clutter vector c has the form of a spherical
invariant random vector (SIRV) with a covariance matrix
Rc = E(v2)Σ.

Based on the SIRV model, different non-Gaussian (also
called compound Gaussian) distributions of the clutter can be
generated as developed in [12].

One of the most important clutter distributions is the K-
distribution it provides a good fit to the envelope of the

data acquired for different clutter types [13]. To express K-
distribution in terms of the SIRV model, the PDF of the
modulating scalar v is taken as [12]

f(v) =
2β

Γ(α)2α
(βv)

2α−1
exp

(
−β2v2

2

)
(6)

where α, β are the shape and scale parameters, respectively,
and Γ(·) is the Gamma function, so that E(v2) = 2α/β2.
Detailed simulation procedures to generate coherent SIRV
clutter with K-distribution and the desired covariance matrix
are shown in [12].

III. NONHOMOGENEITY DETECTOR (NHD)

The NHD aims to detect the nonhomogeneous cells from
the secondary cells used in covariance matrix estimation of the
CUT, so that the homogeneity assumption of the secondary
cells is valid. Therefore, the NHD tests the homogeneity of
each cell, represented by vector z ∈ C

J , with respect to all
the secondary cells, represented by the matrix Z ∈ C

J×(L−1),
where (L − 1) is the number of secondary range cells after
excluding the CUT. In effect, the NHD is a STAP detector
where each secondary cell is considered in turn as a CUT,
while the remaining cells are considered as its secondary cells.

For an arbitrary secondary cell z, the GIP test amounts to
computing the square of the Mahalanobis distance [4], [5],
that is,

ΛGIP = (z− μ)HR−1(z− μ)
H1

≷
H0

η (7)

where R ∈ C
J×J and μ ∈ C

J are the true covariance matrix
and the mean of the secondary cell z, respectively. The true
covariance matrix of z is unknown in practice and an estimate
R̂ is used instead; the same applies for μ. In (7), H0 is the
null hypothesis (i.e., z is homogeneous with respect to the
remaining secondary cells), H1 is the alternative hypothesis,
and η is a threshold that is determined based on the required
probability of false alarm Pf . Unfortunately, the GIP test is
not robust in non-Gaussian clutter environment, as reported in
[9].

A more robust test is the NAMF test given by [8]:

ΛNAMF =
|sHR̂−1z|2

(sHR̂−1s)(zHR̂−1z)

H1

≷
H0

η (8)

The covariance matrix is estimated from the remaining (L−2)
secondary cells (after excluding the CUT and the secondary
cell z being tested for homogeneity) and the test in (8) is
performed for each secondary cell in Z. One of the widely
used estimators of the covariance matrix is the normalized
sample covariance matrix (NSCM) expressed as [14]

R̂NSCM =
J

L− 2

L−2∑
l=1

zlz
H
l

zHl zl
(9)

where zl is the l-th secondary cell in the remaining (L − 2)
secondary cells. The estimator in (9) is used due to its low
complexity, when compared to other iterative estimators [9].
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For large-dimensional systems, to evade the high compu-
tational burden of estimating the covariance matrix (and its
inverse) for each secondary cell, the covariance-free equivalent
of the GIP NHD detector has been introduced in [10] based
on the projection depth function. A depth function D(z, F )
provides center-outward ordering for points z ∈ C

J having a
cumulative distribution function (CDF) F , where the median
is the deepest point [15]. Based on this ordering, outliers can
be detected by their distance from the center as compared to
a threshold. A related function that serves a similar purpose
is the outlying function defined as [16]

O(z, F ) =
1

D(z, F )
− 1 (10)

An outlying function of particular interest to our work is the
projection based outlying function defined as

O(z, F ) = sup
u∈CJ ,‖u‖=1

|uHz− μ(Fu)|
σ(Fu)

(11)

where Fu is the CDF of uHz, while μ(Fu) and σ(Fu) are
the univariate location and scale measures, respectively. The
projection-based outlying function has a higher breakdown
value in comparison to other types of depth functions, which
means higher robustness against outliers [17]. The median
(MED) and median absolute deviation (MAD) have been
widely used as measures of location and scale in robust
statistics to detect outliers [18], [19].

The projection outlying function in (11) can be used to form
a covariance-free equivalent to the GIP test [10] that provides
a better performance than the GIP for Gaussian disributed
clutter. However, just as the GIP, it still exhibits an unstable
detection and false alarm performance in case of compound
Gaussian distributed clutter as indicated in [9] and the NAMF
test is shown to be the most robust NHD. In the next section
we propose a nonparametric and covariance-free test based on
(11) that provides the robust performance of the NAMF test.

IV. THE PROPOSED NONPARAMETRIC NHD

Starting from Cauchy-Schwartz inequality [20] it can be
shown that

sup
u∈CJ ,‖u‖=1

(
uHz− MED(uHZ)

MAD(uHz)

)2

k2f =

(z− MED(uHZ))HR−1(z− MED(uHZ)) (12)

where kf is a scalar that depends on the CDF Fu (or its
sample version F̂u). The test statistic in (12) is a covariance-
free alternative to the GIP in (7). A projection depth function
for the steering vector s can also be derived s in the same
way, that is,

sup
‖u‖=1

( ∣∣uHs
∣∣

MAD(uHZ)

)2

k2f = sHR−1s (13)

In the following, we establish the main steps in deriving the
proposed test. The proofs are not shown due to the lack of
space.

Proposition 1. For a range cell z ∈ C
J and a target steering

vector s ∈ C
J , the test statistic

(
sHz

)
sHR−1s has the

same useful signal component at its output as the test statistic
sHR−1z, but it has a lower interference component.

Put simply, Proposition 1 allows to replace the vector z in
the numerator of (8) with its projection on the target steering
vector s. It is assumed that the outputs of both tests contain two
components: the useful signal component, under assumption
H1, and the interference component introduced by clutter and
noise. By this modification, the new test can be expressed in
terms of the projection depth function as stated in Corollary
1 below.

Corollary 1. Let sHzs be the projection of the received signal
vector z on the steering vector s, while Z, R, and kf are as
defined before. Then∣∣∣(sHz)sHR−1s

∣∣∣2 = k4f

∣∣∣∣(sHz) sup
‖u‖=1

( ∣∣uHs
∣∣

MAD(uHZ)

)2∣∣∣∣
2

(14)

Therefore, the proposed nonparametric covariance-free
NAMF test at each range cell is expressed as

Λnew =

∣∣sHz
∣∣2 sup

‖u‖=1

( |uHs|
MAD(uHZ)

)2

sup
‖u‖=1

( |uHz−MED(uHZ)|
MAD(uHZ)

)2

H1

≷
H0

η (15)

We note, however, that the MAD of correlated data is
not Fisher-consistent (the proof is omitted due to lack of
space) and therefore, the sample distribution of the test in
(15) is dependent on the used scale measure MAD [17]. This
dependence degrades the false alarm performance of the test
and, in turn, its detection performance as we will show in
Section V. To address this issue, we propose decorrelating all
the (L−1) cells before applying (15) using the nonparametric
Kendall’s tau correlation estimator. For the case of a real-
valued data matrix X ∈ R

J×(L−1), the latter is calculated as
[21]

ψ̂jk =
2

(L− 1)(L− 2)

∑
i<i′

sign
(
(xji − xji′ ) (xki − xki′ )

)
(16)

where ψ̂jk is the (j, k)-th entry of the estimated correlation
matrix Ψ̂ ∈ R

J×J . Since, we seek to apply Kendall’s tau
correlation estimator to the complex secondary sample matrix
Z ∈ C

J×(L−1), we use instead the augmented correlation
matrix. Specifically [22],

Ψ̂ = 2Ψ̂xx − 2jΨ̂
T

xy (17)

where Ψ̂xx is the autocorrelation of the real part of Z, Ψ̂xy

is the cross correlation of the real and the imaginary parts
of Z = X + jY, and Z is assumed to be a proper complex
random matrix, i.e., Ψ̂xy = −Ψ̂

T

xy . The decorrelated sample
matrix is

Zdec = Â−1Z (18)
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where Ψ̂ = ÂHÂ.
It should be emphasized that the decorrelation process is

performed once for all the secondary cells and the correlation
in (16) and (17) does not need to be estimated for each
secondary cell as done in the NAMF or the GIP tests.

V. PERFORMANCE ASSESSMENT

In this section, the performance of the proposed test is
evaluated and compared to that of the NAMF test. The
probability of false alarm Pf = 0.01 for all detection perfor-
mance simulations. The average clutter-to-noise ratio (CNR) is
assumed to be 20 dB. The output signal-to-interference-plus-
noise ratio (SINR) is

SINR = |a|2sHR−1s (19)

In all simulations, we consider the two extreme cases α =
0.1, that represents heavy-tailed spiky clutter, and α = 100
which represents Gaussin clutter (it is observed that the K-
distribution can be approximated as a Gaussian distribution
while α > 4 [23]). The scale parameter β of the texture
random variable v is allowed to randomly and independently
change from one range cell to another as suggested in [23]. In
the following simulations, β ∼ U ]0, 1] where U denotes the
uniform distribution. The sample size of the secondary cells is
fixed to L−1 = 64 range cells (vectors) and the dimension of
the range cell is either J = 32 or 16. The correlation matrix
of the simulated clutter is

Ψ =
[
0.9|i−j|] , 1 ≤ i, j ≤ J (20)

The distance between any two adjacent antenna elements
d = 0.5λ where λ is the operating radar wavelength. The target
is assumed to be at azimuth angle θt = 35° and normalized
Doppler frequency f̄d = fdT = 0.3 where fd is the target’s
Doppler frequency. However, the detection performance is
independent of the direction or the speed of the target.

The implementation of the supremum in (15) is practi-
cally impossible since it implies using infinite number of
projections. As shown in [20], the supremum is calculated
by taking the maximum over a finite number of projections.
The minimum number of projections Q for a stable detection
performance can not be determined analytically; however,
simulations show that it can be safely set to Q = 4J , which
is the value used here. The projection vectors are generated
randomly using a uniform distribution over a hypersphere with
unit radius in J-dimensional space.

Fig. 1 shows the output of the two tests, NAMF and the
proposed one for α = 0.1 and J = 16. Four targets are injected
in secondary range cells 6, 22, 40, and 55 with different
power levels. The figure shows that the outputs of the two
tests are similar, but with slightly different amplitudes. To
evaluate the performance of the detector statistically, Fig. 2
and Fig. 3 compare the performance of the proposed detector
with that of the NAMF test (using the covariance estimator
in (9)) in Gaussian and K-distributed clutter. It is observed
that the proposed test improves the detection performance due
to its attenuated interference as indicated in Proposition 1.
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Fig. 1. NAMF and proposed tests in presence of 4 interference sources (α =
0.1, J = 16)
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Fig. 2. Detection performance with Gaussian clutter (α = 100)

Moreover, in both clutter distributions, one can observe that
the proposed test shows a lower degradation (or sensitivity)
than NAMF to an increase in the secondary cell dimension J
given a fixed number of range cells L.

To show the effect of decorrelating the data before applying
the proposed test, Fig. 4 demonstrates the performance of the
proposed test with and without decorrelation using Kendall’s
tau estimator, defined in (16) and (17), in heavy-tailed K-
distributed clutter. In Fig. 4, it is observed that decorrelating
the secondary cells, which is proposed in (18) for a mathe-
matical purpose, improves the detection performance of the
proposed test.

VI. CONCLUSION

In this paper, we introduced a covariance-free and nonpara-
metric form of the NAMF test that does not need prior knowl-
edge of the clutter distribution nor estimating the covariance
matrix of the CUT. The new detector is based on the projection
depth function, a well-known tool in robust statistics which
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Fig. 3. Detection performance in K-distributed clutter (α = 0.1)
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Fig. 4. Detection performance in K-distributed clutter (α = 0.1, J = 16)
with and without decorrelation

converts the multivariate problem into a univariate one using
the projections of randomly generated vectors. Therefore, the
new test does not need the computationally expensive process
of estimating the covariance matrix (or its inverse) for each
secondary cell. Using Monte Carlo simulations, the detection
performance of the new test is shown to be equivalent to
that of the NAMF test in highly-correlated Gaussian and
compound Gaussian distributed clutter. To sum up, using tools
from robust statistics, a low-complexity NHD is formed which
preserves the robust performance of the NAMF test along with
the nonparametric nature of these tools. These merits, make
the proposed test an excellent candidate for real-time STAP
radar applications.
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