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Abstract

In this paper, we present a new transform domain
least-mean-square (LMS) algorithm for weight adapta-
tion in the Griffiths-Jim’s generalized sidelobe canceller
(GSC). In this algorithm we consider the set of tap-input
vectors at the output of the blocking matrix as a two-
dimensional array and map the whole array to transform
domain via a full two-dimensional orthogonal transform. A
self-orthogonalizing LMS algorithm is then used for weight
adaptation in the transform domain. The purpose of the
2-dimensional orthogonal transform is to remove both the
autocorrelation of the signal within individual channels
and the crosscorrelation between adjacent channels. As a
result the proposed algorithm exhibits faster convergence
rate than previous algorithms and is therefore well suited
to real-time processing of non-stationary array signals.

I. Introduction

The purpose of an adaptive beamformer is to adjust
the weights of a linear array processor in real time to re-
spond to a signal coming from a desired direction while
discriminating against noises from other directions.

Early work on adaptive beamforming was done by
Frost [1]. His method, called “Constrained LMS” algo-
rithm, is a simple constrained stochastic gradient-descent
least-mean-square (LMS) algorithm with self-correcting
capability. The algorithm attempts to minimize noise
power at the array output while using a set of linear con-
straints to maintain a chosen frequency response in the
direction of interest (look-direction). The generalized side-
lobe canceller (GSC), due to Griffiths and Jim [2), repre-
sents an alternative formulation of the constrained LMS
problem. Essentially, the GSC is a mechanism for trans-
forming a constrained minimization problem into an un-
constrained one. In [2}, it is shown that the GSC is identi-
cal to Frost’s algorithm under certain conditions. In both
Frost’s algorithm and the GSC, a vector of time-domain
tap inputs is used to update the weights at each iteration.
As a result, these algorithms suffer from a major drawback
which is common to most time-domain implementations of
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LMS type adaptive algorithms, that is, their convergence
rate decreases as the condition number (i.e., the ratio of
maximum to minimum eigenvalues) of the input autocor-
relation matrix increases.

Recently, Chen and Fang [3] have applied the self-
orthogonalizing frequency-domain LMS algorithm [4],
called FLMS, to Griffiths-Jim’s GSC in order to acceler-
ate its convergence rate for real-time adaptive processing
of array signals. Computer simulations illustrate that
their algorithm exhibits much faster convergence rate
and better performance of nulling jammers than that of
Griffiths-Jim’s GSC. However, their approach does not
exploit the full benefit of the transform domain LMS al-
gorithm. Indeed, each tapped-delay line at the output
of the blocking matrix is transformed individually with a
one-dimensional DFT. This corresponds to diagonalizing
only the principal submatrices of the full data autocor-
relation matrix. As a result the crosscorrelation between
adjacent channels is not removed and the resulting matrix

- controlling the adaptation process is not fully diagonal.

In this paper, we make further improvement on Chen-
Fang’s FLMS beamforming algorithm by exploiting the
correlation which exists between adjacent channels at the
output of the blocking matrix in the GSC. In the proposed
algorithm, we view the set of tap inputs along these paral-
lel channels as a two-dimensional array and map the whole
array to a transform domain via a full two-dimensional or-
thogonal transform. Following this transformation, a self-
orthogonalizing LMS algorithm is used for weight adapta-
tion.

I1I. Chen-Fang’s FLMS algorithm

The FLMS adaptive beamforming algorithm pro-
posed by Chen and Fang is shown in Fig. 1. It consists of
an array of K sensors attached to delay elements, which
are used to steer the array in the desired look direction.

The upper part is a conventional beamformer followed
by a fixed target signal filter, the purpose of which is to
control the frequency response of the beamformer in the
look-direction. The lower part is the sidelobe canceller.
It consists of K — 1 subtractors followed by a set of K —
1 tapped-delay lines (TDL), each with L — 1 tap-delays.
The time-domain tap-input vector X;(m) of the ith TDL
is transformed into the frequency-domair vector U;(n) by
means of the L-point discrete Fourier transform (DFT)
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Fig. 1. Frequency-domain GSC.

matrix D,

U.‘(n) = DX.‘(n) (2.])

where

Xi(n) 2 [zi(n) z(n—-1) .. z(n-L+1)]

Ui(n) 2 [uo,i(n) w1,i(n)

The complete frequency-domain (K — 1)L x 1 tap-input
vector and the complete frequency-domain weight vector
of all the TDLs at the nth iteration are defined as, respec-
tively,

wr-1): )"

U(n) = [UT(n) UZF(n) UE _(m)]7,

W(n) 2 (Wl (n) WI(n) WE_ (n)]",
where
Wi £ [wii(n)  wai(n) wri(n)]T .
From (2.1), it is clear that
D
D
U(n) = X(n). (2.3)

D

Finally, the output of the complete frequency-domain filter
is
y(n) = W (n)U(n). (2.2)

The weight vector W(n) is continually updated so as
to minimize the power of the error e(n) = d(n) — y(n)
between the output of the conventional beamformer, d(n}),
and that of the sidelobe cancelling network, y(n). To this
end, a self-orthogonalizing adaptive LMS algorithm with
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accelerated convergence rate is used [4]. In the ideal form
of this modified LMS algorithm, the gradient estimate is
premultiplied by the inverse of the correlation matrix of

“the complete frequency-domain tap-input vector U(n), so

that the weights are updated as
Win+1)=W(n)+ 29RgpU(n)e” (n). (2.4)

In practice, the inverse of the correlation matrix Ryv is
unknown and must be estimated from the data. In the
FLMS beamforming algorithm, this matrix is estimated
as follows:

e Step 1: Assume Ryy is approximately diagonal so that
Ryu can be estimated by a diagonal matrix, i.e.,

RUU ~ diag(rm e T(L=1)1 - -To(K—1)--- r(L—l)(K—l))
2.

where rix 2 Efu(n)ufi(n)] 0 <1< L—-11<k <
K —1) is the power of the Ith frequency component of
the kth TDL. Since Ryy is assumed to be diagonal,
the computation of its inverse is straightforward.

e Step 2: Estimate the value of ri recursively as
fik(n) = Bri(n — 1) + (1 = Bu(n)uix(n)  (2.6)
where 8 is a smoothing constant.

e Step 3: The desired estimate of the inverse correlation
matrix R, is given by

RE}] = diag(l/r'm, ey I/f(L—l)(K—l))-

III. The new 2D-DCT-LMS algorithm
The original purpose of Chen-Fang’s FLMS algorithm
is to accelerate the convergence rate of the conventional
GSC by first removing the correlation between the tap-
inputs via an orthogonal transform and then using the self-
orthogonalizing LMS algorithm in the transform domain.
We noté, however, that contrarily to the assumption in

.(2.5), the frequency-domain correlation matrix Ryv is not

diagonal in general. Indeed, even if the optimal Karhunen-
Loeve transform (KLT) is used in (2.1) instead of the DFT,
Ryu will not be diagonal because of cross-correlation be-
tween adjacent TDLs in Fig. 1. This is expalined below.

Suppose we use the L-point KLT transform in (2.1).
Then, we have

L.
Un) = X(n) 6
Lk

=[Uf(n) Uf(n) ... Uk(m)]"
where L; is KLT transform matrix of the ith TDL, and

Ui(n) = LiXi(n).



Now,

Ruu 2 E[U(n)U ¥ (n)]

R Ri2 Ryx-1)
_ Rz R Ro(x-1)
R-(K—l)] R-(}\'—l)2 R{K—l)(K—l)
(3.2)
where a
Ri; = E[Ui(n)Uy (n)]
= LiE[Xi(n) X (n)]L;’

is the cross-correlation matrix of Ui(n) and Uj(n) (in the
transform-domain).

When i = j, Ri; in (3.2) is the autocorrelation ma-
trix of the ith transform domain tap-input vector. By
definition of the KLT transform, this matrix is diagonal.
However, when 1 # j, there is no reason to believe that R,;
is a zero-matrix. Indeed, it is not difficult to imagine situ-
ations where there exists a strong correlation between the
transform domain vectors Ui(n) and U;(n). As a result, it
follows that Ryu is generally not a diagonal matrix. With-
out the full diagonality of Ryy in (2.4), the advantages
of the FLMS algorithm appear to be limited. In fact, it
should be possible to exploit the cross-correlation between
adjacent TDLs to further improve the convergence rate of
the FLMS algorithm.

Fig. 2. 2-D KLT transform GSC.

In the single channel case, the purpose of the self-
orthogonalizing transform-domain LMS algorithm is to re-
move the temporal correlation of the TDL tap inputs in
order to accelerate the convergence rate. In this respect,
the KLT transform is optimal in the sense that the trans-
form coeflicients are completely uncorrelated. In the multi-
channel case under consideration here, i.e. beamforming,
there exist both temporal and spatial correlation between
the tap-inputs on the various TDLs. In this case, the op-
timal transform should remove both types of correlation.
In principle, this can be achieved by applying a full or-
thogonal transform which diagonalizes all the tap inputs
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simultaneously. Instead of transforming each TDL indi-
vidually as in the FLMS algorithm, we therefore propose
the following approach: consider the set of tap-input vec-
tors at the output of the blocking matrix in Fig. 1 as
a two-dimensional array and map the whole array to the
transform domain via a full two-dimensional KLT trans-
form. A block diagram of the proposed approach, called
2-D KLT transform GSC, is shown in Fig. 2.

The complete set of tap-input vectors at the output

of the subtraction network, represented by the: L x (K —1)
matrix

X(n) 2 [Xi(n) Xa(n) ... Xx-a(n)],

is first transformed into another L x (K — 1) matrix Vn)
via a full 2-D KLT transform:

V(n)=[Vi(n) Va(n) Vi-1(n)]
vo1(n) voz2(n) vo(xc—1)(n)
2 v11(n) vi2(n) vy x-1)(n)
vr-1(n)  vz-12(n) v-ny(x-n(n)
= L2 [X(n)]

(3.3)
where the operator L; represents the 2-D KLT transform
(this operator can be thought of as a 4-dimensional ma-
trix). Now, all the transform coefficients are uncorrelated,

that is,
Elvi;(n)vii(n)] = Aijbir . (3.4)
The output of the sidelobe cancelling network, y(n),
is obtained as a weighted sum of the elements of the
transform-domain matrix V(n). The complete transform-

domain weight vector of the adaptive filter at the nth it-
eration is represented by

Z(n) 2128 (n) ZI(n) zZE ()"
where

Zi(n) & [2u(n) z2i(n) . zi(n))

is the weight vector associated with V;(n). Then, the out-
put y(n) of the cancelling network is given by

y(n) = ZH(n)V(n) (3.5)
where
Vi) 2V () V() -~ VELMm]
is the complete transform-domain tap-input vector.

Now, if the self-orthogonalizing LMS algorithm is
used to update the weight vector Z(n), we have:

Z(n+1) = Z(n) + 29Ry, V(n)e*(n) (3.6)



where Ryv is the autocorrelation matrix of the vector
V(n), ie.
Ruv = E[V(n)V*(n)]

which is a L(K — 1) x L(K — 1) matrix. From (3.4), it
follows that Rvv is diagonal, i.e.

Rvv = diag [/\01,--~-«\(L—x)1,--~,lo(x-1),~~-,/\(L-1)(K—1)] .
3.7)

As a result, the calculation of the inverse matrix Ry, in
(3.6) is straightforward.

We note that the KLT transform is signal-dependent
and consequently, its implementation in real time appli-
cations poses practical problems. In such cases, it is
preferable to use suboptimal transforms such as the 2-
dimensional discrete cosine or Fourier transforms (2D-
DCT and 2D-DFT, respectively), which are not signal-
dependent and for which fast algorithms are available.
When such transforms are used, Rvv is only approxi-
mately diagonal. However, as our experience indicates,
the advantages offered by the 2D-KLT (e.g., improve con-
vergence rate) are preserved.

Finally, as with the FLMS algorithm, only an estimate
of Ry}, can be used in (3.6). Such an estimate can be
obtained by following Steps 2 and 3 in Section II.

IV. Simulation results

To compare the performance of the proposed 2D-
DCT-LMS algorithm with that of Chen-Fang’s FLMS, the
same simulated conditions as in [3] were used. These con-
ditions are briefly described below.

The target signal and the three interfering jammers
are narrow-band plane waves impinging upon a linear, uni-
form sensor array from different directions. These signals
are monitored in the presence of a white background noise
process with variance o2, = 0.1. The fixed target signal
filter is all-pass with a gain of 1/K. Additional specifica-
tions are given below, where f; and 6; denote the normal-
ized frequency and incident angle (relative to broadside)
of the plane wave signals, respectively:

e Array: number of sensors K = 17, tap length L = 8.
e Target signal: fo = 0.1, § = 0°, SNR = 10 dB.

e Jammer 1: f; = 0.3, 6, = 34°, INR1 = 20 dB.

o Jammer 2: f; = 0.4, 6, = —49°, INR2 = 40 dB.

o Jammer 3: f3 =0.25, 3 = —24°, JINR3 = 30 dB.

Synthetic signals with the above specifications were
generated and processed with the 2D-DCT-LMS and the
FLMS algorithms. The step size parameter v governing
the weight adaptation of the FLMS algorithm in (2.4) was
set to ¥ = 1.2 x 1073 and that of the 2D-DCT-LMS in
(3.6) was set to vy = 1.116 x 10™3. With these values, the
same steady-state mean-square-error (MSE) is obtained at
the output of both adaptive beamformer.

The output waveforms of the two algorithms are
shown in Fig.3. The average learning curves of the GSC

~16 ~

OF FLMS
3|
i o
-8
o » 00 150 200 250 300
time index
OF
$i
% o
-S
[ 0 100 150 00 250 300
time index.

MSE (dB)

Fig. 4. Comparison of learning curves.

using the FLMS and the new 2D-DCT-LMS algorithms are
shown in Fig.4. From these results, it is apparent that the
2D-DCT-LMS algorithm converges faster than the FLMS
algorithm.
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