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Abstract
In orthogonal frequency division multiplexing (OFDM) based

transmissions over single-input multiple-output (SIMO) wireless
channels, adaptive beamforming can be employed at the receiver
side to combat the effect of directional interference. To save chan-
nel bandwidth, there is strong incentive to use blind algorithms
that attempt to restore properties of the transmitted digital signals.
Among these, the recursive least-squares constant modulus algo-
rithm (RLS-CMA) is of considerable interest due to its fast con-
vergence and good interference cancelation properties. However,
since a distinct copy of the RLS-CMA must be run on each individ-
ual sub-carrier in OFDM applications, this approach may entail
considerable computations. In this paper, we investigate frequency
interpolation schemes to reduce the computational complexity of
the SIMO-OFDM beamforming system based on the RLS-CMA.
These approaches, which exploit the coherence bandwidth of the
broadband wireless channels, divide the sub-carriers into several
contiguous groups and apply the RLS-CMA to a selected sub-
carrier in each group; the weight vectors at other frequencies are
then obtained by interpolation. We show through simulations that
an M -fold reduction in complexity can be achieved where M , the
number of sub-carriers in each interpolation group, depends on
the characteristics of the radio channel and OFDM system.

1 Introduction

Today’s increasing demand for high data rate transmissions
continues to spur the search of bandwidth efficient modulation
techniques with reduced complexity for broadband wireless com-
munications. System design based on these considerations nat-
urally leads to the use of orthogonal frequency division multi-
plexing (OFDM) [1]. Furthermore, to mitigate the effects of co-
channel interference (CCI) originating from users at different lo-
cations, an effective approach consists of using multiple antennas
at the base-station along with digital beamforming algorithms. In
the case of uplink OFDM transmissions originating from single-
antenna terminals, the resulting communication system is referred
to as a single-input multiple-output (SIMO) OFDM system. To
save channel bandwidth, there is strong incentive to use blind algo-
rithms that attempt to restore certain properties of the transmitted
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signals. Among these, the recursive least-squares constant modu-
lus algorithm (RLS-CMA) is of considerable interest due to its fast
convergence and good interference cancelation properties [2–4].

Nevertheless, the direct use of the RLS-CMA within a SIMO-
OFDM receiver structure still induces considerable computational
complexity. Indeed, being based on the standard RLS algorithm,
the RLS-CMA needs to maintain and update an estimate of the in-
verse data correlation matrix, which requires on the order of K2

operations per time iteration, where K is the number of anten-
nas at the receiver side. In SIMO-OFDM applications, this re-
quirement is compounded by the fact that a distinct copy of the
RLS-CMA must, in theory, be run on each individual OFDM sub-
carrier. In recent years, several authors have considered the use of
interpolation methods to reduce the complexity of the channel es-
timation/equalization in broadband wireless systems [5, 6]. In this
paper, we present and study frequency interpolation schemes to
reduce the computational complexity of the uplink SIMO-OFDM
beamforming system based on the RLS-CMA.

The interpolation techniques that we propose are based on ex-
ploiting the coherence bandwidth of the broadband wireless chan-
nels. For radio transmission through correlated channels, the num-
ber of OFDM sub-carriers can be much larger than the channel
order and, as a result, several contiguous sub-carriers may expe-
rience similar fading conditions. Therefore, to reduce the overall
complexity of the SIMO-OFDM beamformer based on the RLS-
CMA, we divide the sub-carriers into several contiguous groups
and only apply the RLS-CMA adaptation to a selected sub-carrier
in each group; the weight vectors at other frequencies are then ob-
tained by interpolation from adjacent tones. In the paper, we con-
sider two basic forms of interpolation, namely flat-top and linear,
but extension to other forms is possible. We show through simula-
tions that anM -fold reduction in complexity can be achieved with
a suitable interpolation approach where M , the number of sub-
carriers in each group, depends on the SIMO channel’s coherence
bandwidth and the OFDM system’s tone spacing.

The paper is organized as follows. Section 2 introduces the
SIMO-OFDM system model and reviews the RLS-CMA. The pro-
posed frequency interpolation schemes for RLS-CMA are pre-
sented in Section 3 along with a discussion of computational sav-
ings. Simulation results demonstrating the possible advantages of
the proposed schemes are presented in Section 4. Some conclu-
sions are drawn in Section 5.
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2 Background

2.1 SIMO-OFDM Beamforming

In recent years, there has been considerable interest in the use
of adaptive beamforming techniques in OFDM systems as a way to
mitigate the adverse effect of directional co-channel interference
[7–10]. In this work, we consider an uplink SIMO-OFDM system
model with adaptive narrow-band linear processors, i.e. beam-
formers, operating across the spatial dimension, as shown in Fig.
1. The system is equipped with K antennas at the receiver side,
and the total bandwidth is divided into N sub-carriers. On the TX
side, the baseband input symbol stream is split intoN sub-streams,
forming a frequency-domain data block s = [s0, s1, . . . , sN−1]

T ,
by means of a serial-to-parallel (S/P) converter. The parallel sub-
streams then go through an OFDM modulator, in which the in-
verse FFT is applied to convert frequency-domain vector s into a
vector of N time domain samples. To eliminate inter symbol in-
terference, a cyclic prefix is added at the leading edge of each time
domain vector. Finally, the resulting time-domain sequence is up-
converted to pass-band for transmission over the radio channel.

In going through the SIMO wireless channel, the transmitted
signal is corrupted by linear channel effects, interference, and
noise. On the RX side, each antenna signal is down-converted
to baseband and fed to an OFDM demodulator where the cyclic
prefix is removed and an FFT operation is applied to recover the
frequency domain data. In this work, to simplify the analysis, we
assume that the OFDM demodulators operate under perfect syn-
chronization. Because of the multiple antennas at the receiver side,
narrow-band spatial filtering across the antenna dimension can be
applied to the OFDM demodulator outputs to combat the effects
of directional interference in each OFDM sub-channel. We denote
by wj(n) the vector of complex beamforming weights applied to
the jth subcarrier (j ∈ {0, 1, . . . , N−1}) at the nth symbol epoch
(n ∈ {0, 1, 2, . . .}). An adaptive beamforming algorithm is used
to compute the optimal weight vector needed to recover the orig-
inal transmitted symbols from co-channel interference and noise
on each sub-carrier.

2.2 The RLS-CMA

The focus of this work is on blind adaptive beamforming al-
gorithms for estimating and tracking the optimal set of weight
vectors wj(n) to be used in the SIMO-OFDM receiver. Adap-
tive beamforming algorithms can be generally classified into two
broad categories, namely: pilot-aided and blind. Algorithms in the
former categories make use of pilot signals or training sequences
to drive the adaptation towards an optimal solution. Unfortunately,
the transmission of a reference signal consumes precious channel
bandwidth which is not always desirable. Accordingly, there has
been much interest in blind approaches that can adapt their weights
by restoring certain properties of the transmitted digital signals.

Within this class of blind algorithms, the RLS-CMA is of par-
ticular interest due to its good overall interference cancelation per-
formance and fast convergence. This algorithms attempts to find
an optimal weight vector that restores an underlying constant mod-
ulus property of the transmitted signal. For instance, in the present
OFDM context, assuming a quadrature phase-shift signal constel-
lation with normalized energy, the transmitted symbol sj(n) over
the jth sub-carrier at time n will have a constant magnitude, i.e.

|sj(n)| = 1. An RLS-CMA, applied to that particular sub-carrier,
updates its weight vector wj(n) so as to restore this property.

Specifically, let xk
j (n) denote the complex data sym-

bol available at the jth sub-carrier output of the kth an-
tenna’s OFDM demodulator at time n. Also let xj(n) =

[x1
j (n), x2

j (n), . . . , xK
j (n)]

T
denote the complex, K dimen-

sional vector of data symbols induced on all the RX an-
tennas on the jth subcarrier at time n and let wj(n) =

[w1
j (n), w2

j (n), . . . , wK
j (n)]

T
denote the corresponding adap-

tive weight vector. The RLS-CMA recursively seeks the opti-
mum weight vector wopt

j which minimizes the objective func-
tion J(wj) = E[|ŝj(n)|2 − 1], where ŝj(n) = wH

j xj(n), the
beamformer output, provides an estimate of the transmitted sym-
bol sj(n). In the RLS-CMA, the optimization step is carried on
adaptively, i.e. iteratively over time, in an exponentially weighted
least-squares sense. The main equations of the RLS-CMA are
summarized below [3]:

zj(n) = (xH
j (n)wj(n− 1))xj(n), (1)

hj(n) = Pj(n− 1)zj(n), (2)

gj(n) = hj(n)/(λ+ zH
j (n)hj(n)), (3)

Pj(n) = λ−1Pj(n− 1)− λ−1gj(n)zH
j (n)Pj(n− 1), (4)

ξj(n) = 1−wH
j (n− 1)zj(n), (5)

wj(n) = wj(n− 1) + gj(n)ξ∗j (n), (6)

The parameter λ ∈ (0, 1) denotes the forgetting factor. TheK×K
matrix Pj(n) in (4) provides an estimate of the inverse correlation
matrix of the observation, i.e. E[xj(n)xH

j (n)]−1. The algorithm
can be initialized with the following parameter values: wj(0) =
[1, 0, . . . , 0]T , Pj(0) = δ−1IK , where IK is the K ×K identity
matrix and δ is a small positive constant.

3 Frequency interpolation schemes
The direct use of the RLS-CMA within a SIMO-OFDM re-

ceiver structure will induce considerable computational complex-
ity. Indeed, being based on the standard RLS algorithm, the RLS-
CMA needs to maintain and update an estimate of the inverse data
correlation matrix. This step (see equation (4)) requires O(K2)
operations per time iteration. In SIMO-OFDM applications, this
requirement is compounded by the fact that a distinct copy of the
RLS-CMA must be run on each of the N individual OFDM sub-
carriers, resulting in an overall complexity of O(NK2).

In the frequency domain, when applying the OFDM scheme
over a channel with a relatively large coherence bandwidth, it
is possible for adjacent sub-carriers to experience similar fad-
ing conditions. This will typically be the case if the number of
OFDM sub-carriers is much larger than the order of the channel
impulse responses. For instance, when applying the IEEE 802.11a
OFDM standard scheme (with subcarrier spacing of 312.5kHz) to
a frequency selective channel with coherence bandwidth of say,
1.25MHz, there will be about 4 sub-carriers experiencing similar
fading [11]. Hence, the optimal weights generated for a given sub-
carrier may remain valid for its neighboring sub-carriers.

Based on such considerations, we propose to divide the set
of all sub-carriers into several contiguous groups and only apply
the RLS-CMA adaptation to a selected sub-carrier in each group;
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Figure 1. Baseband SIMO-OFDM system model.

the beamforming weights for the remaining sub-carriers can then
be obtained by means of interpolation between the selected sub-
carriers. Below, we consider both the zero order (flat-top) and
first order (linear) form of interpolation as a means to reduce im-
plementation complexity in SIMO-OFDM beamforming systems
that employ the RLS-CMA for blind weight adaptation.

3.1 Flat-top interpolation
Flat-top interpolation, also called zero-order hold [12], is the

simplest interpolation scheme. By definition, it maintains the level
of the function to be interpolated constant between known sample
values. To implement flat-top interpolation in the present SIMO-
OFDM beamforming framework, we first divide the N OFDM
sub-carriers into several contiguous groups and we then apply the
RLS-CMA adaptive update to a selected representative sub-carrier
in each group; the remaining members in a group use this repre-
sentative weight vector to obtain their corresponding beamformed
output. The details of the approach can be formulated as follows.

For simplicity, assume that the number of sub-carriers is a
power of 2, i.e. N = 2ν and partition the OFDM sub-carrier
index set S = {0, 1, . . . , N − 1} into a union of I = 2a con-
tiguous, non-overlapping subsets Si, each containing an equal
number M = 2b of sub-carriers (a + b = ν). That is, we let
Si = {iM +m : m = 0, ...,M − 1} for i ∈ {0, · · · , I − 1}, so
that Si ∩ Sj = ∅ for i �= j and ∪I−1

i=0 Si = S. We shall refer to
the tones indexed by subset Si as the ith group. In our implemen-
tation of the flat-top interpolation scheme, we select the middle
tone in each group as the representative to which the RLS-CMA is
applied. Specifically, define qi = iM + 2b−1 as the index of the
representative tone. For each group index i = 0, . . . , I − 1, we
apply the RLS-CMA to update wqi(n):

wqi(n) = ψ(wqi(n− 1),xqi(n), λ) (7)

where ψ(.) stands for the RLS-CMA (1)-(6); for the remaining
tones in group i, we set wj(n) = wqi(n) where j ∈ Si, j �= qi.
Only trivial modifications are needed to accommodate other cases,
such as N not a power of 2 or subsets Si with different sizes.

3.2 Linear interpolation
If the propagation channel is more frequency selective, i.e. the

group members are not experiencing similar fades, flat-top inter-
polation may not be adequate to achieve the desired reduction in
complexity while maintaining a good system performance. In this

case, one may think of resorting to a higher-order interpolation
scheme in which the missing beamforming weight vector coeffi-
cients are conceptually obtained by connecting adjacent represen-
tative weights by a polynomial curve in the complex plane. How-
ever, as we explain below, because of the inherent phase ambiguity
in blind constant modulus based algorithms, this approach neces-
sitates certain modifications in order to work properly. We illus-
trate this concept with the linear interpolations, but extensions to
higher-order forms of interpolation are possible.

For i = 0, . . . , I−1, let ri = iM denotes the lowest tone index
in the ith group and, invoking the periodic nature of the FFT oper-
ation, also let rI = (IM) mod N = 0. Thus, the frequency indices
ri and ri+1 define the boundary tones of the ith group. In this case,
instead of using the same weight vector for all group members, the
weight vectors of intermediate sub-carriers (i.e. between boundary
tones) are obtained by applying linear interpolation to the weight
vectors of boundary tones, which are themselves updated with
the RLS-CMA, i.e.: wri(n) = ψ(wri(n − 1),xri(n), λ) for
i = 0, ..., I − 1. The direct application of linear interpolation
for the intermediate tones would lead to the following:

wj(n) =
ri+1 − j
M

wri(n) +
j − ri

M
wri+1(n), (8)

where j ∈ Si and j �= ri. However, (8) fails to perform properly
because of the phase ambiguity in the constant modulus approach.

A simple example is considered below to explain this prob-
lem. Assume there is only a single antenna at the RX side, so that
instead of a weight vector, each sub-carrier is characterized by a
single complex weight. Each copy of the blind RLS-CMA will
introduce an ambiguous phase factor in the estimation of wri(n).
The presence of these phase factors render the direct application
of linear interpolation impractical. This is illustrated in Fig. 2,
where vector �OA represents the linearly interpolated weight be-
tween wri and wri+1 in the complex plane. From the figure, we

note that the norm | �OA| �= 1
2
(|wri | + |wri+1 |) and, in general,

the interpolated weight fails to provide a meaningful solution.
More generally, as a member of the constant modulus fam-

ily of algorithm, the RLS-CMA updates its weight vector based
only on the modulus of the incoming symbols, i.e., it is phase-
blind. Therefore, the weight vector convergency is invariant to a
phase rotation in the transmitted data. That is, the RLS-CMA can
achieve the optimal operating point with an arbitrary phase shift
in the incoming data, as long as the correlation between adjacent
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Figure 2. Linear interpolation with phase error in
the complex plane.

antenna elements remains the same. Equivalently, if wj(n) is op-
timal for the tone j, so is wj(n)ejφ for any value of the phase
factor φ ∈ (−π, π]. Because of this phase ambiguity, linear inter-
polation between wri(n) and wri+1(n) may not be suitable for an
intermediate tone. To solve this problem, we propose that before
applying linear interpolation, the adjacent weight vectors wri(n)
and wri+1(n), which are obtained by the RLS-CMA, should be
phase shifted to remove the effect of the phase ambiguity.

Specifically, we propose a least-square approach in which the
required phase shift is obtained by minimizing the cost function:

J(φ) = ||wri(n)− ejφwri+1(n)||2, (9)

in which φ is the phase difference between the weight vectors of
adjacent boundary tones. Using standard optimization techniques,
the solution to this problem is obtained as follows:

φ0 = arg min
φ
||wri(n)− ejφwri+1(n)||2

= (wH
ri+1(n)wri+1(n))−1wH

ri+1(n)wri(n). (10)

After obtaining φ0, the linear interpolation is applied between
wri(n) and ejφ0wri+1(n), instead of the original wri+1(n). The
corresponding equation is shown as (j ∈ Si and j �= ri):

wj(n) =
ri+1 − j
M

wri(n) +
j − ri

M
ejφ0wri+1(n). (11)

3.3 Computational complexity
The computational complexity of the RLS-CMA, as presented

in [3], is 3K2 + 6K complex multiplications per iteration, where
K is the number of antennas at the RX side. In this expression,
the terms 3K2 and 6K represent the complexity of the weight
adaptation and the beamforming steps, respectively. For the di-
rect implementation of the RLS-CMA in a SIMO-OFDM receiver
structure, i.e. without complexity reduction, a distinct copy of the
RLS-CMA must be run on each individual sub-carrier. Hence, the
complexity of the complete system can be expressed as

CDirect = 3NK2 + 6NK, (12)

where N is the number of sub-carriers.
In the flat-top interpolation scheme, only the weight vector of

the selected tone in each group, represented by index qi ∈ Si, is
updated by the RLS-CMA. Therefore, the term associated to the

weight adaptation in (12) is reduced by a factor of M , so that the
complexity is now

CInterp =
3NK2

M
+ γKN, (13)

where γ = 6. For linear interpolation, the above formula remains
valid, but with γ = 8 to account for the use of (11). The extra
amount of computations needed to obtain the least-squares phase
factors in (10) is of order O(NK/M) and can be ignored.

4 Simulation results
Clearly, the use of a larger value of M is advantageous from

the viewpoint of reducing system complexity. However, the corre-
sponding reduction will come at the price of a decrease in system
performance. Therefore, the size of the interpolation group M
should be chosen wisely. In this section, we use numerical simu-
lations to investigate how the choice ofM affects the performance
of the SIMO-OFDM system with RLS-CMA beamforming under
representative radio channel conditions.

4.1 Methodology
We consider an uncoded SIMO-OFDM system with N = 64

sub-carriers. At the TX side, we use a quadrature phase shift key-
ing signal constellation with constant normalized power on each
sub-carrier, i.e. E{|sl|2} = PS . Following the IFFT operation, a
cyclic prefix of length 8 is added to each time-domain data block.
At the RX side, a uniform linear array with K = 10 antenna el-
ements is employed. The distance between adjacent antenna ele-
ments is set to half the wavelength at the carrier frequency.

The propagation of the desired OFDM signal from the TX to
the multiple antenna RX is modeled as a broadband linear disper-
sive SIMO channel, which is generated by a statistical multi-path
vector channel simulator [13]. We assume the presence of 3 re-
solvable paths with angles of arrival (AOA) of (−90◦, 90◦, 150◦)
and corresponding angular spread of (5◦, 10◦, 2◦). The desired
signal is received in the presence of directional interference and
additive white background noise. The AOA of the interfering sig-
nal is set to −10◦ and its power level is denoted as PI . The
noise samples are complex circular Gaussian random variables
with zero-mean and power PN .

The performance of the SIMO-OFDM systems with adaptive
beamforming is evaluated in terms of the signal plus interference-
to-noise ratio (SINR) and the bit error rate. For a given realization
of the SIMO channel, the SINR for the jth sub-carrier is given by

SINRj =
PS |wH

j hS,j|2
wH

j (hI,jPIhH
I,j + PNI)wj

, (14)

where wj represents the beamforming weight vector used on the
jth sub-carrier and hS,j and hI,j denote the K × 1 vectors of
complex channel coefficients for the desired source signal and the
interference signal, respectively, at that frequency. We also define
an overall broadband SINR by averaging SINRj over all the sub-
carriers, i.e. SINR = 1

N

∑N−1
j=0 SINRj .

4.2 Performance of Interpolated Schemes
The proposed interpolation schemes across different sub-

carriers are evaluated in terms of their complexity and achievable
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SINR and BER as a function of the group size M . Since the num-
ber of OFDM tones in our system is set to N = 64, the following
values of the group size are considered M ∈ {4, 8, 16}. That is,
all the groups have the same bandwidth (i.e. M tones) and the
number of groups is I = N/M .

According to the analysis above, as M increases, more weight
vectors are obtained by interpolation, and consequently the system
complexity is reduced. The computational complexity of the direct
and interpolated RLS-CMA schemes for different values of M , in
unit of complex multiplication per iterations, is shown in Table 1.
The value given for M = 1 is obtained from (12) and corresponds
to a direct application of the RLS-CMA to each sub-carrier (i.e.
no interpolation). The values given for M > 1 are obtained from
(13) for the flat-top interpolation γ = 6. The right-most column
in the table shows the ratio CInterp(M)/CDirect. These figures are
consistent with the observed run times for the MATLAB imple-
mentations of the algorithms. We note that even a small values of
M = 4 results in quite significant computational savings.

Table 1. Complexity of interpolated RLS-CMA
M Complexity Complexity ratio
1 23040 1
4 8640 0.38
8 6240 0.27
16 5040 0.22

Fig. 3 and 4 show the time evolution of the SINR for the
flat-top and linear interpolation schemes, respectively. The rela-
tive signal and interference powers were set to PS/PN = 10dB,
PI/PN = 10dB. These plots were obtained by averaging the
overall broadband SINR over 200 independent realizations of the
dispersive SIMO channel. For each realization, the various RLS-
CMA-based SIMO-OFDM systems (which differ in the value of
M and type of interpolation) were initialized as explained in Sec-
tion 2.2 and run (with forgetting factor set to λ = 0.99) until
steady-state convergence. That is, the SIMO channel realization
remains fixed during the blind adaptation of the weight vectors,
which enables us to reach a near optimal steady-state.

Since the RLS-CMA is applied, the system convergence rates
are fast for all the different values of M . The main distinction
among these plots is the SINR level after convergence, i.e. the
steady-state performance of the system. The steady-state SINR
level for M = 16 is significantly lower than for the other three
cases. Indeed, when the interpolation group size M is large, the
group bandwidth becomes larger than the channel coherence band-
width and consequently, the weight vector obtained by interpola-
tion may not be suitable for certain sub-carriers. Hence, from these
two figures,M = 4 andM = 8 yield satisfactory performance for
this particular example. Note that the steady-state SINR level for
the various SINR plots in Fig. 3 and 4 remain bellow the so-called
"optimal limit". This upper bound is obtained from (15) when
an optimum weight vector wopt

j is used in place of wj for each
sub-carrier index j. The weights wopt

j is derived as a minimum-
variance distortionless response beamformer [14], under perfect
knowledge of the channel vectors hS,j and hI,j .

It is also interesting to look at the SINR performance from a
frequency domain perspective. Since our system is working un-
der a frequency selective fading channel, the convergence level of

SINRj for each tone varies greatly. Comparing the results for dif-
ferent frequencies we generally find that the system performance
for the linear interpolation scheme is better than for the flat-top in-
terpolation. This advantage is especially apparent when the group
size is large, such as M ≥ 8, and when the sub-carrier is experi-
encing deep fading. This is because the linear interpolation uses
weight vectors at two representative frequencies to carry on the in-
terpolation, instead of only one location in the flat-top scheme, and
is therefore more robust to large error in the representative weights
that may result from deep fades at the corresponding frequencies.

Fig. 5 and 6 show the uncoded average BER performance for
the flat-top and linear interpolation schemes, respectively. It is
seen that the BER performance is decreasing with an increase in
the group size, M . Compared to M = 1, the use of M = 8 with
flat-top interpolation leads to a 1dB performance loss. For linear
interpolation, this loss is only around 0.5dB. Fig. 6 also reveals
an interesting feature of the linear interpolation approach. Indeed,
when the group size is relatively small, in this case M = 4, the
weight vectors obtained by interpolation may perform even better
than those obtained by individual application of the RLS-CMA on
each sub-carrier. It is because for some sub-carriers which are ex-
periencing deep fading, the direct-adaptation of the weight vectors
with the RLS-CMA may not properly converge, while the weight
vectors obtained by interpolating adjacent sub-carriers, which do
not experience deep fades, may form adequate beampatterns.

5 Conclusion
We have investigated frequency-domain interpolation schemes

to reduce the computational complexity of a blind SIMO-OFDM
beamforming system based on the RLS-CMA. The proposed ap-
proaches, which exploit the coherence bandwidth of the broadband
wireless channels, divide the sub-carriers into contiguous groups.
The RLS-CMA is applied only to a selected sub-carrier in each
group while the weight vectors at other frequencies are obtained by
interpolation. Both flat-top and linear interpolations were consid-
ered in this paper, but other forms of interpolation and variations
on this theme are possible. We showed through numerical simu-
lations using representative broadband dispersive channels that a
significant reduction in complexity can be achieved (e.g. factor
of 4) at the price of a slight loss in SINR and BER performance
(e.g. factor of 0.5dB). Better performance were obtained with the
linear interpolation. In practice, different choices of the interpola-
tion group size M should be tried, and the one achieving the best
trade-off between desired performance and computational com-
plexity should be chosen. Clearly, for given specifications of the
OFDM system, this choice depends on the characteristics of the
radio channel. For instance, if the channel is less frequency se-
lective, a larger group size M can be used, and vise versa. The
optimal choice of M as a function of the parameters defining the
radio channel remains a topic for further investigations.
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Figure 3. Average SINR versus number of itera-
tions for flat-top interpolation.
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Figure 4. Average SINR versus number of itera-
tions for linear interpolation.
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Figure 5. BER for flat-top interpolation.
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Figure 6. BER for linear interpolation.
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