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Abstract

This paper studies convergence properties of subspace
trackers using orthogonal iteration. In the context of
blind estimation of a time-varying channel, orthogonal it-
eration and its variants have been widely considered for
tracking the channel parameters by updating the eigen-
decomposition of an exponentially weighted correlation
matrix. While it is well known that orthogonal iteration
converges exponentially with arbitrary initial conditions,
orthogonal-iteration-based subspace trackers can only in-
herit these merits when the channels considered undergo
extremely slow time-variations. In this paper, we generalize
the traditional (i.e. fixed subspace) convergence analysis
of the orthogonal iteration to include non-stationary situa-
tions as well. We use the results to investigate the conver-
gence behavior of subspace trackers based on orthogonal
iteration under slow, moderate and rapid time-variations of
the underlying subspace. In the latter case, we expose a fun-
damental limitation of the orthogonal iteration, i.e. practi-
cal limit on subspace variations to ensure effective tracking.

1 Introduction

Subspace decomposition has proved to be an important
tool in various signal processing applications. To this end,
a straightforward approach is simply to employ either an
eigenvalue decomposition (EVD) or singular value decom-
position (SVD). These approaches, which belong to the
family of direct or block processing techniques, are charac-
terized as computationally demanding procedures and un-
suitable for online processing due to their lack of repetitive
structure [1]. Furthermore, they are often implemented in a
batch mode, using an estimated correlation matrix obtained
by collecting time samples over a sufficiently long observa-
tion interval. Therefore, these approaches, which rely on the
assumption of statistical stationarity of the data, cannot be
used in situations where the characteristics of the received
signals change with time [2]. Computationally efficient and

sequential algorithms that produce an exact or approximate
EVD or SVD at each time step are generally favoured in
signal processing applications.

Thus, a considerable effort has gone into the develop-
ment of sequential adaptive algorithms, also known as sub-
space trackers. To date, several signal-subspace trackers
have been proposed for non-stationary environments. In-
stead of recomputing the EVD or SVD from scratch with
every update, these algorithms attempt to recursively update
the EVD or SVD so as to minimize the amount of compu-
tations involved [2]. While there are many more signal-
subspace trackers than noise-subspace trackers in the liter-
ature [3], nonetheless, in the applications of blind channel
estimation, we can transform the noise-subspace problems
into signal-subspace ones without much effort [4].

Orthogonal iteration is a simple technique that can be
used to compute higher-dimensional invariant subspaces
[5]. It is shown to have a global and exponential conver-
gence property under a mild assumption on the distribution
of eigenvalues, with arbitrary initial conditions [6]. In ad-
dition, it is suitable for real-time processing because it is
well structured [7]. Therefore, orthogonal iteration and its
variants have been considered for blind adaptive channel es-
timation to a great extent. Existing subspace tracking algo-
rithms can be broadly categorized as whether or not they are
based on orthogonal iteration. For the orthogonal-iteration-
based subspace trackers, their variants include the low rank
adaptive filter (LORAF) [7], the orthogonal projection ap-
proximation and subspace tracking (OPAST) [8], the Oja’s
method, and the novel information criterion (NIC) [9]. Re-
cently, improvements on these existing approaches can also
be found [3][10][11].

In this paper, given that numerous subspace trackers
in the literature are fundamentally derived from the con-
cept of orthogonal iteration, we first investigate the con-
vergence properties when orthogonal iteration is applied in
non-stationary scenarios. Specifically, we are interested in
the distance between the true and the orthogonal-iterated
subspaces. Then we study a fundamental limitation on the
use of orthogonal-iterated subspace trackers when they are
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applied in time-varying scenarios. Our results will be use-
ful for better understanding the behaviors of subspace track-
ers based on orthogonal iteration when applied to estimate
time-varying subspaces.

The notation used in this paper is as follows: A vector
is denoted by a bold lower-case letter and a matrix is de-
noted by a bold upper-case letter. The range of A ∈ C

m×n

is defined by R(A) := {Ax : x ∈ C
n×1}. ‖x‖p and

‖X‖p represent the p-norms of a vector x and a matrix X,
respectively. Dr(X) denotes the subspace spanned by the
eigenvectors corresponding to the r largest eigenvalues of
X. λr(X) and σr(X) represent the rth largest eigenvalue
and singular value of the matrix X, respectively.

2 Orthogonal iteration and its applications

Given a tall, column orthonormal matrix Q0 ∈ C
N×r,

the so-called method of orthogonal iteration generates a se-
quence of matrices Qm, whose column span is assumed to
approximate the span of the r− dimensional dominant sub-
space of the matrix W ∈ C

N×N , according to the follow-
ing recurrence:

Am = WQm−1, m = 1, 2, · · ·
QmRm = Am, (1)

where Qm and Rm denote the QR decomposition of the
matrix Am. If W does not change over time, one can show
that the subspace R(Qm) converges to Dr(W) at a rate
proportional to |λr+1(W)/λr(W)|m [5]. Therefore, the
usefulness of the method depends on this ratio, since it de-
termines the rate of convergence. Note that when r = 1, (1)
is just the well-known power method [12].

In several applications of interest in signal processing
and communications, however, the assumption on the sta-
tionarity of W is usually not valid. Instead, a time-varying
sequence {Wm}∞m=1 is often used, which is updated recur-
sively as in e.g.:

Wm = αWm−1 + (1− α)zmzH
m, (2)

where m now represents the discrete-time index, α ∈ [0, 1]
represents the forgetting factor (typically close to 1), and
zm ∈ C

N×1 denotes an observation vector at time m, often
modeled as an i.i.d. sequence of random vectors. In this
case, we may sequentially track the r− dimensional dom-
inant subspace of the time-varying sequence {Wm}∞m=1

simply by replacing the stationary matrix W in (1) with
Wm, given the forgetting factor α is fairly close to one [13].

3 Convergence analysis

In order to motivate the method and to derive its conver-
gence properties in non-stationary scenarios, we follow the

analysis as well as the notation for the stationary case given
in [5], and generalize the orthogonal iteration as follows.

To begin, let us consider k iterations of the recurrence
in (1) and use induction to express it by

WkWk−1 · · ·W1︸ ︷︷ ︸
:=W̄k

Q0 = QkRkRk−1 · · ·R1, (3)

where W1, · · · ,Wk represent matrices of interest over the
first k time iterations, respectively. Assume that

ŪH
k W̄kŪk = Λ̄k = diag(λ̄i,k) (4)

is an EVD of W̄k with λ̄1,k ≥ λ̄2,k ≥ · · · ≥ λ̄N,k ≥ 0 and
ŪH

k Ūk = I. Partition Ūk and Λ̄k as follows:

Ūk =
[
Ū1,k Ū2,k

]
, Λ̄k =

[
Λ̄1,k 0
0 Λ̄2,k

]
, (5)

where Ū1,k ∈ C
N×r, Ū2,k ∈ C

N×(N−r), Λ̄1,k ∈ C
r×r,

and Λ̄2,k ∈ C
(N−r)×(N−r). Then we can arrive at[

Λ̄1,k 0
0 Λ̄2,k

] [
ŪH

1,kQ0

ŪH
2,kQ0

]
=

[
ŪH

1,kQk

ŪH
2,kQk

]
(RkRk−1 · · ·R1) . (6)

If we let

ŪH
k Ql =

[
ŪH

1,kQl

ŪH
2,kQl

]
:=

[
Vl

Yl

]
, l = 0, 1, · · · , k, (7)

then
Yk = Λ̄2,kY0V−1

0 Λ̄−1
1,kVk (8)

can be obtained by using (6) and (7). We can define the
distance between the two subspaces Dr(W̄k) and R(Qk)
according to [5]

dist (Dr(W̄k),R(Qk)) = ‖ŪH
2,kQk‖2 = ‖Yk‖2. (9)

By invoking (8), we can obtain

‖Yk‖2 ≤ ‖Λ̄2,k‖2‖Y0‖2‖V−1
0 ‖2‖Λ̄−1

1,k‖2‖Vk‖2. (10)

Let θ̄k ∈ [0, π/2] be defined to provide another measure of
the closeness of the two subspaces Dr(W̄k) and R(Q0),
according to

cos (θ̄k) = min
u∈Dr(W̄k), v∈R(Q0)

|uHv|
‖u‖2‖v‖2 . (11)

Then cos (θ̄k) = σr(ŪH
1,kQ0) = σr(V0) and ‖Y0‖2 =

sin(θ̄k) [5]. Combining with (9)-(11), we can finally arrive
at

dist(Dr(W̄k),R(Qk)) ≤ tan(θ̄k)
(

λ̄r+1,k

λ̄r,k

)
. (12)

In the following, we categorize the non-stationary scenarios
into three main cases and show how the result in (12) can
be used to study the convergence properties in each case.
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Case 1: Very small time variations

In general, we can express Wk−i = Wk + ΔWk−i for
i = 1, 2, · · · , k− 1. Therefore, W̄k in (3) can be re-written
as

W̄k = WkWk−1 · · ·W1

= Wk(Wk + ΔWk−1) · · · (Wk + ΔW1)
= (Wk)k + ΔW̄k, (13)

where ΔW̄k = W̄k − (Wk)k comprises products of Wk

and ΔWk−i of different powers, i = 1, 2, · · · , k − 1. Let
us further assume that

UH
k WkUk = Λk = diag(λi,k) (14)

with λ1,k ≥ λ2,k ≥ · · · ≥ λN,k ≥ 0. If ΔW̄k → 0, then
W̄k can be approximated by (Wk)k alone. Hence, we can
rewrite (12) as

dist(Dr(Wk),R(Qk)) ≤ tan(θ̄k)
(

λr+1,k

λr,k

)k

. (15)

Note that tan(θ̄k) can be seen as a constant in this case
due to the small time variations in Wi’s. We may inter-
pret the above result as follows: Given very small variations
of Wi for i = 1, 2, · · · , k, the distance between Dr(Wk)
and R(Qk) converges to zero with a rate equal to (λr+1,k

λr,k
)k

(assuming λr,k > λr+1,k), which is the well-known prop-
erty of the subspace-tracking algorithms using orthogonal
iteration.

Case 2: Moderate time variations

For moderate variations of Wi over i = 1, 2, · · · , k,
however, the above property generally does not hold any-
more. We first notice from (12) that the orthogonal itera-
tion actually converges towards to Dr(W̄k), which may be
largely different from Dr(Wk) now. Apart from this, we
also wonder how the convergence rate is affected. To an-
swer this question, it is of interest to view the effect ΔW̄k

in (13) as a perturbation to the matrix (Wk)k. Therefore,
the corresponding perturbation in the eigenvalues of (Wk)k

can be described according to
∣∣λi(W̄k)− λi((Wk)k)

∣∣ ≤ ‖ΔW̄k‖2, (16)

assuming (Wk)k is normal [14], which is the case in appli-
cations of general interests. Fig. 1(a) illustrates the bound-
aries of the perturbed eigenvalues λr+1(W̄k) and λr(W̄k),
which are bounded by a circle of radius ‖ΔW̄k‖2, with cen-
ters located at λr+1((Wk)k) and λr((Wk)k), respectively.

Therefore, the ratio ( λ̄r+1,k

λ̄r,k
) in (12) governing the conver-

(b)

(a)

λr+1((Wk)k)

‖ΔW̄k‖2 ‖ΔW̄k‖2

λr+1(W̄k)

λr((Wk)k)

λr+1,k−1(Wk−1)

λr(W̄k)

λr+1,k(Wk)

λr,k−1(Wk−1)

λr,k(Wk)

‖ΔWk‖2‖ΔWk‖2

Figure 1. (a)Perturbation of the eigenvalues
λr• • ((Wk)k) and λr((Wk)k) due to ‖ΔW̄k‖• .
(b)Perturbation of the eigenvalues λr• • ,k−• ((Wk−• )) and
λr,k−• ((Wk)) due to ‖ΔW̄k‖• .

gence rate is now bounded by

λr+1((Wk)k)− δ

λr((Wk)k) + δ
≤

(
λ̄r+1,k

λ̄r,k

)
≤ λr+1((Wk)k) + δ

λr((Wk)k)− δ
,

(17)
where δ := ‖ΔW̄k‖2 ≥ 0. This implies that the conver-
gence rate may be slightly increased or decreased, depend-
ing on the specific nature of the perturbation source ΔW̄k.

Case 3: Large time variations

For large variations of Wi over i = 1, 2, · · · , k, we can
generally assume that Dr(W̄k) can be significantly differ-
ent from Dr(Wk), potentially making the subspace track-
ing ineffectual. It is therefore natural to ask, to what ex-
tent can we still track the subspace by orthogonal iteration,
given the matrices Wi are rapidly changing. In other words,
we are curious to know what is the maximum allowable
time-variation of Wi.

One possible way is to restrain the variation from Wk−1

to Wk to at most half the distance between the rth and (r+
1)th eigenvalues of Wk−1, i.e.,

‖ΔWk‖2 <
1
2
|λr,k−1(Wk−1)− λr+1,k−1(Wk−1)|.

(18)
Focusing on the kth iteration alone, i.e. WkQk−1 =
QkRk, we can re-state the problem from the viewpoint of
initial condition Qk−1 with one-step iteration. On the basis
of earlier discussions, we know that

dist(Dr(Wk),R(Qk)) ≤ tan(θk−1)
(

λr+1,k(Wk)
λr,k(Wk)

)
,
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where θk−1 ∈ [0, π/2] is defined according to

cos (θk−1) = min
u∈Dr(Wk), v∈R(Qk−1)

|uHv|
‖u‖2‖v‖2 . (19)

We can then clearly see that the distance between the (r +
1)th and the rth eigenvalue of the matrix Wk should be
maximized in order to minimizing the ratio (λr+1,k(Wk)

λr,k(Wk) ),
implying that the boundaries of the perturbed eigenvalue as
illustrated in Fig. 1(b) should not be touching each other.

Summary

1. Very small time variations: orthogonal iteration con-
verges toward to Dr(W̄k) at the rate according to (15).

2. Moderate time variations: for moderate time varia-
tions, the convergence rate may be increased or de-
creased according to (17).

3. Large time variations: to ensure effective tracking, the
rate of change in the underlying subspace cannot ex-
ceeds the fundamental limit provided by (18).

4 Numerical experiments

In order to support the above claims, we provide numer-
ical results as follows. We start by constructing a fixed Her-
mitian matrix W ∈ C

16×16. We first show that when a
noisy sample W

′
is used instead of W in the orthogonal

iteration, the algorithm may converge to a subspace that
is very different from Dr(W). In this experiment, W

′
is

modeled as W+ΔW and 200 runs in total are considered.
At each run, each entry of ΔW is a realization of an i.i.d.
Gaussian r.v. with zero mean and variance σ2. The experi-
mental results for r = 2 and σ2 = 0, 10−3, 10−2, 10−1 are
shown in Fig. 2, where the distance between Dr(W) and
R(Qk), i.e.,

d := dist(Dr(W),R(Qk)), (20)

is plotted versus the iteration index k. As we can observe in
the steady-state, the distance between Dr(W) and R(Qk)
increases as σ2 is increased, simply because the orthogonal
iteration converges to Dr(W

′
) instead of Dr(W). In the

context of subspace tracking a wireless channel, this situa-
tion occurs when an estimated correlation matrix is actually
employed for the algorithm. The estimation errors can be
due mainly to: insufficient time samples for the correlation
matrix averaging, fast time-varying nature of the wireless
channel, improper coefficients from the exponential or rect-
angular windowing, or even a combination of above. In
such cases, we are inevitably falling into the above situa-
tion.

Next, we want to show that the convergence rate in
Case 2 might be slightly increasing or decreasing as de-
scribed in (17). Considering several realizations of ΔW
with σ2 = 10−2, we compare the convergence curves
with the ideal case (i.e., σ2 = 0). With such a pertur-
bation on the matrix W, we can observe the convergence
rates ranging from below to above that of the ideal case, as
clearly shown in Fig. 3. Note that we also show the curve
(λr+1(W)/λr(W))k in the logarithmic scale for reference.

Finally, let us verify (18) by introducing another fixed
Hermitian matrix ΔW. In this experiment, W

′
= W +

β ΔW, where β ∈ R
+ and ‖ΔW‖2 = ‖W‖2. Given

λr(W) = 7.16, λr+1(W) = 6.61 and ‖ΔW‖2 = 9.67,
we need to have

β ≤ |λr(W)− λr+1(W)|
2‖ΔW‖2 ≈ 0.028. (21)

to restrain the variations. We consider a sudden change of
W to W

′
at the 50th iteration for various β’s. As can be ob-

served in Fig. 4, we can see that for cases with β > 0.028,
the sudden change of W to W

′
at the 50th iteration substan-

tially enlarges the distance between Dr(W
′
) and R(Qk).

For practical concerns, we also consider the popular
time-varying model as mentioned in (2), with zm ∈ C

16×1

modeled by

zm = Hxm + nm, (22)

where H ∈ C
16×16 is a fixed channel matrix with

rank(H) = 2, xm is an i.i.d. random vector from a
QAM constellation, i.e., with entries randomly selected
from (1/

√
2)(±1 ± j) with equal probability, and nm is

an i.i.d. Gaussian random vector with zero mean and
variance σ2

n. We choose W0 = (1/500)
∑500

j=1 zjzH
j as

our initial condition. Fig. 5 shows the probability p :=
prob (|λr,k−1(Wk−1)−λr+1,k−1(Wk−1)| ≤ 2‖ΔWk‖2)
versus the forgetting factor α for some SNR’s, where SNR
:= 10 log10(1/2σ2

n). From the curve of SNR = 0dB in the
figure, we can observe that the probability p = 0.5, 0.15,
and 0 when α = 0.93, 0.95, and 0.98, respectively. Indeed,
when α is close to one, the rate of change in Wm in (2)
is very small, and therefore the probability of ‖ΔWk‖2 ex-
ceeding the limit (18) is close to 0. To see how the forgetting
α affects the tracking process, Fig. 6-8 give some realiza-
tions of d versus the number of iterations, when the above
mentioned α’s are considered. From these figures, we can
conclude that orthogonal iteration can only achieve satis-
factory performance when the probability p is fairly small.
Hence, (18) can serve as a fundamental limitation to deter-
mine whether or not orthogonal iteration can be applied in
a rapidly time-varying scenario.
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5 Conclusion

In this paper, we extended the convergence analysis of
orthogonal iteration from stationary cases to non-stationary
ones. In particular, we investigated certain properties of or-
thogonal iteration when it is applied to subspace tracking of
practical wireless time-varying channels. In the context of
blind subspace tracking problems, we can conclude that the
performance of blind channel estimation using orthogonal
iteration is mainly determined by whether we can obtain a
good estimate of the time-varying correlation matrix. In the
case of moderate time variations, we showed that the rate
of convergence may be increased or decreased, depending
on the nature of the perturbation source. We also discussed
a fundamental limitation on the use of orthogonal iteration
over rapidly time-varying wireless channels.
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≤ 2‖ΔWk‖2) versus the forgetting factor α in the
time-varying model.
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Figure 6. dist(Dr(Wk),R(Qk)) versus the num-
ber of iterations in the time-varying model with
α = 0.98 when SNR = 0dB.
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Figure 7. dist(Dr(Wk),R(Qk)) versus the num-
ber of iterations in the time-varying model with
α = 0.95 when SNR = 0dB.
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Figure 8. dist(Dr(Wk),R(Qk)) versus the num-
ber of iterations in the time-varying model with
α = 0.93 when SNR = 0dB.
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