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ABSTRACT

Subspace-based blind channel estimation primarily exploits the
orthogonality structure of the noise and signal subspaces by
applying a signal-noise space decomposition to the correlation
matrix of the received signal. In practice, the correlation ma-
trix is unknown and must be estimated through time averaging
over multiple symbol blocks. To this end, the wireless channel
must be time-invariant over a sufficient time interval, which
may pose a problem for wideband applications. In this paper,
we propose a novel subspace-based blind channel estimation
algorithm with a reduced time averaging interval, as obtained
by exploiting the frequency correlation among adjacent OFDM
subcarriers. We present simulation results of the proposed as
well as referenced subspace-based methods, including Cyclic
Prefix and Virtual Carriers approaches, and show that the pro-
posed scheme is able to obtain a desired correlation matrix by
reducing the number of the OFDM blocks for time averaging
up to 85%.

I. INTRODUCTION

Blind channel estimation for MIMO-OFDM systems has re-
ceived great attention and has become a very vital area of re-
search in recent years. Under multichannel or multirate mod-
els, blind channel estimation by using Second Order Statistics
(SOS) potentially has faster convergence rates than that by us-
ing higher order statistics [1]. Among these SOS blind ap-
proaches, subspace-based channel estimation is attractive since
channel estimates can often be obtained in a closed-form from
optimizing a quadratic cost function [2]. Without employ-
ing any precoding at the transmitter, a noise subspace-based
method is proposed for OFDM systems by utilizing the redun-
dancy introduced by the Cyclic Prefix (CP) [3], and it is further
extended for MIMO-OFDM systems in [4]. Virtual Carriers
(VC) are subcarriers that are set to zero without any informa-
tion being transmitted. The presence of VC provides another
useful resource that can be used for channel estimation. Such
a scheme is proposed for OFDM systems [5], and it is further
extended for MIMO-OFDM systems in [6].

The aforementioned approaches primarily exploit the sep-
arability of the noise and signal subspaces by applying the
Eigenvalue Decomposition (EVD) on the correlation matrix of
the received signal. In practice, the correlation matrix can only
be estimated by averaging over multiple time samples, given
the wireless channel is time-invariant during this averaging pe-
riod. Since the quadratic cost function is constructed from the
eigenvectors of the noise subspace obtained from the EVD, the

accuracy of the eigenvectors obtained from the sampled cor-
relation matrix dominates the performance of the estimation.
Hence, the more time samples are averaged, the better the esti-
mation performance is. However, how many samples are suffi-
cient to obtain a sampled correlation matrix meeting a certain
level of confidence? A basic rule of thumb is: the number of
the time samples must be larger than or equal to the order of
the correlation matrix so as to make it full rank or invertible
[7]. For example, it would take at least 250 OFDM blocks (or
500 OFDM symbols) to achieve a normalized root mean square
error (NRMSE) = 10−2 when we consider an IFFT size of 16
and SNR = 20dB for the subspace-based approaches [6]. If the
size of IFFT were increased to 64, the required OFDM blocks
would increase up to thousands for time averaging [8], mak-
ing these subspace-based blind channel estimation approaches
impractical.

In this paper, we propose a new approach for subspace-based
blind channel estimation in MIMO-OFDM systems with re-
duced time averaging interval of the correlation matrix. This
is achieved by exploiting the frequency correlation among ad-
jacent OFDM subcarriers through the concept of subcarrier
grouping [9, 10]. The proposed scheme requires only an up-
per bound of the channel order, and the ambiguity matrix, em-
bedded in all the subspace-based estimation problems, can be
solved by optimization. Simulation results are also presented
to support our claims and designs.

The rest of this paper is organized as follows. In section II,
system and channel models will be briefly described. In sec-
tion III, a subspace-based blind channel estimation for MIMO-
OFDM systems with reduced time averaging interval will be
proposed. Simulation results of the proposed and the refer-
enced methods will then be presented in section IV, and con-
clusions will be drawn in the final section.

The notation used in this paper is as follows: E[x] denotes
the expected value of the random variable x. ⊗ denotes the
Kronecker product. diag(x) stands for a diagonal matrix with
x on its main diagonal.

⊕∑
i Xi = diag(Xi) denotes the di-

rect sum of the matrices Xi. vec (·) is the Vec operator. tr(A)
denotes the trace of the square matrix A. ‖x‖1 and ‖x‖2 rep-
resents the L1 and L2 norm of the vector x, respectively.

II. BACKGROUND

A. System Model

We propose a MIMO-OFDM system with NT transmit and
NR receive antennas, employing NC subcarriers. Let the
mth OFDM symbol transmitted over the kth subcarrier

1-4244-1144-0/07/$25.00 c©2007 IEEE

Authorized licensed use limited to: McGill University. Downloaded on June 18, 2009 at 11:52 from IEEE Xplore.  Restrictions apply.



The 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’07)

be denoted as xm[k] :=
[
xm

1 [k] xm
2 [k] · · · xm

NT
[k]

]T
,

where xm
q [k] is the symbol transmitted at the qth trans-

mit antenna. Then the mth OFDM symbol transmit-
ted over NC subcarriers can be written as xm :=[
xm[0]T xm[1]T · · · xm[NC − 1]T

]T

. Assume the in-

coming symbol streams span over NF OFDM symbols at each
epoch, then x = [x1T x2T · · · xNF

T ]T represents
the complete set of transmitted symbols. At the receiver, let
the mth received OFDM symbol over the kth subcarrier be

denoted as ym[k] :=
[
ym
1 [k] ym

2 [k] · · · ym
NR

[k]
]T

, where
ym

p [k] is the symbol received at the pth receive antenna. Then
the mth OFDM symbol received over NC subcarriers can be

written as ym :=
[
ym[0]T ym[1]T · · · ym[NC − 1]T

]T

,

and y = [y1T y2T · · · yNF
T ]T represents the complete set

of received symbols. In the following, we assume that (1) the
length of the OFDM cyclic prefix is greater than the maximum
excess delay of the channel, (2) the channel is time-invariant
over NF OFDM symbols, and (3) E[|xm

q [k]|2] = 1.

B. Channel Model

We consider NLOS environments where scatterers are sepa-
rated into N clusters. Let hp,q,n(t) be the complex channel
gain at time t between the pth receive antenna and the qth trans-
mit antenna, associated with the nth multipath (1 ≤ n ≤ N)
with a delay τn. Considering all the N multipaths, the response
at time t between the pth receive antenna and the qth transmit
antenna to an impulse applied at t − τ is given by

hp,q(τ, t) =
N∑

n=1

hp,q,n(t)δ(τ − τn). (1)

The NR × NT complex-valued random matrix Hn(t)
with [Hn(t)]p,q := hp,q,n(t) is zero mean with

E
[
vecHn(t) vecHn′ (t)H

]
= 0NRNT ×NRNT

, n �= n
′
,

assuming the N clusters are uncorrelated. The equivalent
frequency response from the pth receive antenna to the qth
transmit antenna over the kth subcarrier at time t is then given
as

h p,q [k]=Fτ{hp,q(τ, t)}=
N∑

n=1

hp,q,n(t)exp (−j2πkτn/TNC)

(2)
for k = 0, 1, 2 · · · , NC − 1, where T is the sampling inter-
val of OFDM symbols, and t is omitted in hp,q [k] for conve-
nience. For MIMO-OFDM systems, the signal received at the
pth receive antenna over the kth subcarrier and the mth OFDM
symbol is given by

ym
p [k]=

√
Es

NT

NT∑
q=1

hp,q [k]xm
q [k] + nm

p [k], p = 1, 2, · · · , NR,

(3)
where Es is the average energy evenly divided across
the transmit antennas and allocated to the kth subcarrier,

nm
p [k] represents the zero mean circularly symmetric com-

plex Gaussian (ZMCSCG) noise at the pth receive an-
tenna over the kth subcarrier and the mth OFDM sym-
bol, and hp,q [k] represents the equivalent frequency re-
sponse between the pth receive antenna and the qth trans-
mit antenna, over the kth subcarrier and the mth OFDM
symbol. Let nm[k] :=

[
nm

1 [k] nm
2 [k] · · · nm

NR
[k]

]T
,

nm :=
[
nm[0]T nm[1]T · · · nm[NC − 1]T

]T

, and n =

[n1T n2T · · · nNF
T ]T , then the input-output relation of the

MIMO-OFDM systems may be expressed by

y =
√

Es

NT
H · x + n, (4)

where H := INF
⊗ (

⊕ ∑NC−1
k=0 H[k]), with diagonal blocks

defined as

H[k]=




h1,1[k] h1,2[k] · · · h1,NT
[k]

h2,1[k] h2,2[k] · · · h2,NT
[k]

...
...

. . .
...

hNR,1[k] hNR,2[k] · · · hNR,NT
[k]


∈C

NR×NT .

(5)

III. PROPOSED APPROACH

By assuming the noise n is independent of the transmitted
symbols x, the identification of the channel H can be real-
ized by first applying the EVD on the autocorrelation matrix
Ry = E

[
yyH

]
, then optimizing a quadratic cost function

constructed from the eigenvectors of the noise subspace. An
estimate of the correlation matrix can be obtained through time
averaging by

R̂y =
1

Tav

Tav∑
j=1

y(j)yH
(j), (6)

where y(j) ∈ C
NRNCNF denotes the jth epoch of the re-

ceived signal y, consisting of NF OFDM symbols, and Tav

is the number of OFDM blocks (or simply the number of
time samples). Although a pilot-based (not blind) subspace
method in the frequency domain was proposed in [11, 12],
to our knowledge, a subspace-based blind channel estimation
constructed from (4) has never been considered; since there
are NT NRNC ≥ NT NRL unknown channel coefficients to
be estimated, where L denotes the channel order. Neverthe-
less, the number of unknowns can be reduced by exploiting the
frequency correlation among adjacent OFDM subcarriers with
some loss in the estimation performance; in return, the order of
the correlation matrix and hence the number of time samples
required for time averaging can be reduced significantly. The
details are given below:

Let the frequency span of P adjacent subcarriers reside
inside the coherence bandwidth of the wireless channel and
let S := {0, 1, · · · , NC − 1} be the index set of the NC

subcarriers. S is partitioned into P disjoint subsets (assum-
ing (NC/P ) ∈ Z

+) with each subset denoted as Sp :=
{sp,1, sp,2, · · · , sp,(NC/P )}, where sp,i := p − 1 + (i − 1)P ,
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i = 1, 2, · · · , (NC/P ) for p = 1, 2, · · · , P . Note that
S1 ∪ S2 ∪ · · · ∪ SP = S, and Si ∩ Sj = ∅ for i �= j, where

∅ denotes the empty set. Define xp=[x1
p
T x2

p
T · · ·xNF

p
T ]T ,

yp=[y1
p
T y2

p
T · · ·yNF

p
T ]T , np=[n1

p
T n2

p
T · · ·nNF

p
T ]T , where

xm
p := [ xm[sp,1]

T xm[sp,2]
T · · · xm[sp,(NC/P )]

T ]T ,

ym
p := [ ym[sp,1]

T ym[sp,2]
T · · · ym[sp,(NC/P )]

T ]T ,

nm
p := [ nm[sp,1]

T nm[sp,2]
T · · · nm[sp,(NC/P )]

T ]T .

Then (4) can be re-written for the pth subset as

yp =
√

Es

NT
Hp · xp + np, p = 1, 2, · · · , P, (7)

where Hp := INF
⊗

(⊕ ∑
k∈Sp

H[k]
)

is assumed to be a

“tall” matrix by choosing NR > NT . The identification of Hp

is then based on the autocorrelation matrix Ryp
= E [ypyH

p ],
and can be written as

Ryp
= HpRxp

HH
p + Rnp

, (8)

where Rxp
= (Es/NT ) · E [xpxH

p ] is assumed to be of
full rank, and Rnp

= E [npnH
p ] = σ2

n I. Since the chan-
nel coefficients of adjacent P subcarriers are strongly corre-
lated, the wireless channel can be approximated by denoting
H̄ = H1 = H2 = · · · = HP , and hence an estimate of the
correlation matrix can be obtained by

R̂yp
=

1
PTav

Tav∑
j=1

P∑
p=1

yp (j)yH
p (j), (9)

where yp (j) ∈ C
NRNCNF /P denotes the jth epoch of the re-

ceived signal yp. Therefore, the number of the time samples
required can be significantly reduced since the order of the cor-
relation matrix is reduced by a factor of P , and an averaging
over P subsets, which is equivalent to the frequency averag-
ing, is applied at each time averaging interval. The parameter
P may be chosen to further reduce the time averaging interval
with more loss in the estimation performance.

By applying the EVD on R̂yp
, (9) can be expressed by:

R̂yp
= UΛUH , where U is a matrix whose columns are the

orthonormal eigenvectors of R̂yp
, and can be partitioned as

U = [Us |Un ] = [u1 · · ·uds
|uds+1 · · ·uds+dn

] . (10)

The signal subspace can be denoted as span (Us), while its
orthogonal complement, the noise subspace, can be denoted as
span (Un), with ds = rank (H̄) = NT NCNF /P and dn =
(NR − NT )NCNF /P . Λ is a diagonal matrix consisting of
the corresponding eigenvalues of U, and is denoted as Λ =
diag (λ1, λ2, · · · , λds+dn

) with λmax = λ1 ≥ λ2 ≥ · · · ≥
λds+dn

= λmin ≥ 0. Since H̄ and Us share the same range
space and are orthogonal to the range space of Un, we can have
the following orthogonality relationship

uH
j H̄ = 0, j = ds + 1, · · · , ds + dn. (11)

In order for H̄ to be identifiable, dn is chosen so that dn ≥
NR, and the matrix H̄ needs to be of full column rank, or
rank(H̄) = NT NCNF /P .

Although H̄ can be solved from the set of homogeneous lin-
ear equations in (11); due to the limited time averaging interval,
only an estimate of the noise subspace Ûn is available in prac-

tice. In this case, we can obtain the channel estimate ˆ̄H by
minimizing a quadratic cost function given by

C(H̄) =
ds+dn∑

j=ds+1

‖ûH
j H̄‖2

2. (12)

By partitioning ûj into NF equal segments as ûj =
[ûj,1ûj,2 · · · ûj,NF

]T , we can define a new matrix V̂j :=
[ûT

j,1û
T
j,2 · · · ûT

j,NF
], where ûj,i ∈ C

1×NRNC/P for

i = 1, 2, · · · , NF . In addition, let us define H̄′
=

[h(p)
1 h(p)

2 · · · h(p)
NT

], where h(p)
q is given as

h(p)
q = [h1,q[sp,1] h2,q[sp,1] · · · hNR,q[sp,1] · · ·

h1,q[sp,(NC/P )] h2,q[sp,(NC/P )] · · · hNR,q[sp,(NC/P )]
]T

for q = 1, 2, · · · , NT . Then minimizing the quadratic cost
function in (12) is equivalent to minimizing

C(H̄′
) =

ds+dn∑
j=ds+1

‖H̄′T V̂∗
j‖2

2 =
ds+dn∑

j=ds+1

‖H̄′T V̂∗
j V̂

T
j H̄

′∗‖2.

(13)
Furthermore, let Ψ:=

∑ds+dn

j=ds+1 V̂∗
j V̂

T
j ∈

C
(NRNC/P )×(NRNC/P ), and the eigenvalues of Ψ be or-

dered as γmin = γ1 ≤ γ2 ≤ · · · ≤ γ(NRNC/P ) = γmax. Then
from the Rayleigh-Ritz theory [13], we can have

γmin = γ1 = min
w �=0

wHΨw
wHw

= min
wHw=1

wHΨw (14)

for any w ∈ C
(NRNC/P )×1. If r is a given integer with 1 ≤

r ≤ NRNC/P , then

γ1(Ψ) + · · · + γr(Ψ) = min
QHQ=I

tr (QHΨQ), (15)

where Q ∈ C
(NRNC/P )×r is a matrix whose columns are

the orthonormal eigenvectors corresponding to the r smallest
eigenvalues of Ψ.

In order for H̄′ ⊆ span (Q∗), r = NT NC/P is chosen.
Then minimizing (13) can be re-written by

min C(H̄′
) = min

NT∑
q=1

tr
(
(h(p)

q )T Ψ(h(p)
q )∗

)
, (16)

and hence the channel estimate ˆ̄H′
can be obtained from (15)

as
ˆ̄H′

= Q∗A, (17)

where A ∈ C
(NT NC/P )×NT can be seen as an ambiguity ma-

trix. Note that the ambiguity matrix A can be solved from (8)
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by employing the following optimization

Â = arg min
A

∥∥∥vec
(
T −1(Q∗A) R̂xp

(T −1(Q∗A))H

− (R̂yp
− R̂np

)
)∥∥∥2

2
, (18)

assuming R̂xp
and R̂np

are known from additional estimations
[1]. T −1 is the inverse of the matrix transformation T , which
is defined by T : H̄ → H̄′ .

IV. SIMULATION RESULTS

Simulation results of the proposed as well as the referenced
subspace-based methods, including CP and VC approaches for
MIMO-OFDM systems, are presented in this section. We con-
sider MIMO-OFDM systems with 2 transmit (NT = 2) and 3
receive antennas (NR = 3). The number of subcarriers used in
the OFDM systems is 256 (NC = 256). For each time epoch,
the incoming symbol streams, which are independent and iden-
tically distributed (i.i.d) QPSK symbols, span over 2 OFDM
symbols (NF = 2). The complex-valued channel coefficients
hp,q,n(t)’s are modeled as i.i.d. and ZMCSCG random vari-
ables with E [�[hp,q,n(t)]2] = E [[hp,q,n(t)]2] = 1. In addi-
tion, in order to include the subspace-based methods [4, 6] for
comparisons, we consider a tapped-delay-line scenario with 2
clusters (N = 2) and excess delays defined by τn = (n−1) ·T
for convenience. Under these circumstances, there are 10 sub-
carriers residing inside the coherence bandwidth (P = 10)
if the coherence bandwidth is defined as the bandwidth over
which the frequency correlation function is above 0.9, while
there are 100 subcarriers residing inside the coherence band-
width (P = 100) if the definition is relaxed so that the fre-
quency correlation function is above 0.5.

For the purpose of evaluating the estimation performance,
the ambiguity matrices for all the methods are resolved by as-
suming the channel responses are known. The measures of the
estimation performace considered are the root mean square er-
ror (RMSE) and the channel average bias (CAB) on a OFDM
subcarrier basis, and are defined by

RMSE=

√√√√ 1
NT NRNCNm

Nm∑
j=1

P∑
p=1

∥∥∥vec
(
Hp (j)−T −1[ ˆ̄H′

(j)]
)∥∥∥2

2
,

(19)
and

CAB=
1

NT NRNCNm

Nm∑
j=1

P∑
p=1

∥∥∥vec
(
Hp (j) − T −1 [ ˆ̄H′

(j)]
)∥∥∥

1
,

(20)
where ˆ̄H′

(j) and Hp (j) denotes the jth epoch of the chan-
nel estimate and channel response, respectively. We consider
Nm = 200 Monte Carlo trials in our simulations.

Fig. 1 shows the RMSE measure of the proposed and refer-
enced subspace-based methods, which is a function of the num-
ber of the OFDM blocks (each OFDM block is consitituted of 2
OFDM symbols) employed for obtaining a sampled correlation
matrix when the SNR = 20dB. Fig. 2 shows the corresponding

CAB measure. As expected, the estimation performance of all
the methods is improved when the number of the OFDM blocks
is increased for time averaging. For the referenced methods,
we consider a fixed degree of freedom equals to 8 and 16, re-
spectively. When comparing the same method with different
degrees of freedom, either CP or VC method with a higher de-
gree of freedom outperforms. In addition, with the same degree
of freedom, the CP method outperforms the VC method since
the dimension of the CP’s eigenvectors is larger, imposing more
constraints on the channel estimates, which also coincides with
the results from [5, 6]. For the proposed methods, we consider
P = 1, 2, 4, · · · , 128. In general, we find that the number of
the time samples required is reduced when P is large, while
the estimation performance is also reduced due to the chan-
nel approximations over the P adjacent subcarriers. On the
contrary, the number of the time samples required is increased
when P is small, while the estimation performace is also im-
proved. To achieve the best tradeoff, we note that P should be
chosen to have the frequency spans of these P subcarriers re-
siding around the coherence bandwidth, with the definition of
the correlation function above 0.9.

Fig. 3 shows the RMSE measure of the proposed and refer-
enced subspace-based methods, which is a function of the SNR
when the number of the OFDM blocks employed for obtain-
ing a sampled correlation matrix is fixed to 10 (i.e., 20 OFDM
symbols). Fig. 4 shows the corresponding CAB measure. In
this case, we can observe that the number of the time averaging
interval, rather than the SNR, dominates the estimation perfor-
mance. For the proposed methods, the best tradeoff is achieved
when P = 16. We also note that the proposed methods out-
perform the referenced methods with any degrees of freedom.
While the estimation performance is closely related to the am-
biguity matrix, it should be mentioned that most of the ambi-
guity matrices are obtained with the aid of pilot symbols; how-
ever, the ambiguity matrix of our proposed methods can be re-
solved through an optimization with an additional complexity.

V. CONCLUSION

To the best of our knowledge, less than 16 OFDM subcarriers
is considered in most simulations of the related works. Hence,
the length of the time averaging interval did not become a se-
rious issue. However, this issue arises when we consider a
practical scenario such as the number of the OFDM subcar-
riers is up to 128, and the wireless channel is time-invariant for
only a few OFDM symbols. Under these circumstances, the
traditional subspace-based methods suffer from an extremely
slow convergence rate, making them impractical. In this paper,
we proposed a novel subspace-based estimation method with
a faster convergence rate, mainly by exploiting the frequency
correlation among adjacent subcarriers through the concept of
subcarrier grouping. Within reasonable time averaging inter-
val, the simulation results were shown to support the proposed
methods by achieving both a higher convergence rate and a bet-
ter estimation accuracy. We also proposed a method to obtain
the ambiguity matrix without inserting any pilot symbols at the
transmitter side.
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Figure 1: RMSE versus Tav (SNR=20dB).
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Figure 2: CAB versus Tav (SNR=20dB).
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Figure 3: RMSE versus SNR (Tav = 10).
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Figure 4: CAB versus SNR (Tav = 10).
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