
Joint Design of Beam Selection and
Precoding for mmWave MU-MIMO Systems

with Lens Antenna Array

Rongbin Guo∗, Yunlong Cai∗, Qingjiang Shi†, Minjian Zhao∗ and Benoit Champagne‡
∗College of ISEE, Zhejiang University, Hangzhou, China, 310027

†School of Info. Sci & Tech., Zhejiang Sci-Tech University, Hangzhou, China, 310018
‡Department of Electrical and Computer Engineering, McGill University, Montreal, QC, Canada, H3A 0E9

Emails: {rbguoisee, ylcai, mjzhao}@zju.edu.cn, qing.j.shi@gmail.com and benoit.champagne@mcgill.ca

Abstract—Wireless transmission with lens antenna ar-
rays is becoming more and more attractive for millimeter
wave (mmWave) multiple-input multiple-output (MIMO)
systems with limited radio frequency (RF) chains due
to their energy-focusing capability. In this paper, we
consider the joint design of beam selection and precoding
to maximize the sum rate of a downlink single-sided
lens MU-MIMO mmWave system under transmit power
constraints. We first formulate the optimization problem
into a tractable form using the popular weighted mini-
mum mean squared error (WMMSE) approach. To solve
this problem, we then propose an efficient joint beam
selection and precoding algorithm based on the innovative
penalty dual decomposition (PDD) method. Simulation
results demonstrate that our proposed algorithm can
achieve near-optimal performance when compared to the
fully digital precoding scheme and thus outperform the
competing methods.1

Index Terms—mmWave MU-MIMO, lens antenna ar-
ray, beam selection, WMMSE, PDD method.

I. INTRODUCTION

Communications over millimeter wave (mmWave)
frequencies will be a key feature of the fifth generation
(5G) cellular networks by supporting unprecedented
data rates in the 30-300GHz band [1], [2]. Indeed, the
significantly reduced wavelength makes it possible to
realize massive MIMO systems that use a large number
of antennas within a small physical size, and yet
achieve high array gain for directional communications
by exploiting precoding techniques [3].

However, in the case of massive MIMO, the con-
ventional fully digital precoding techniques lead to
unaffordable costs in terms of radio frequency (RF)
chains and power consumption. To deal with this
limitation, a number of studies have proposed the
concept of beamspace MIMO based on the discrete lens
array (DLA) [4]. In effect, this approach can transform
the traditional MIMO spatial channels into beamspace
channels with angle-dependent energy-focusing capa-
bilities [5]. In practice, only a small number of beams
are needed due to the sparse nature of beamspace
channels. Since each beam corresponds to a single RF
chain, this effectively reduces the cost of RF chains in
mmWave massive MIMO systems. Within this context,
a critical problem with mmWave lens array systems is
the design of the beam selection and digital precoding
schemes.

1This work was supported by the Fundamental Research Funds
for the Central Universities and the National Science Foundation of
China (NSFC) under Grant 91538103

Currently, studies on the beam selection problem
with DLA concentrate on choosing beams with maxi-
mum magnitude (expressed as “MM-BS” in the follow-
ing) to obtain as much power from each user as possi-
ble [5]–[7]. Subsequently, [8] considers the potential
multiuser interference and proposes an interference-
aware beam selection (IA-BS) strategy which achieves
better results than MM-BS schemes. However, all the
aforementioned schemes are based on fixed digital pre-
coding methods – such as zero forcing (ZF), maximum
ratio combining (MRC), etc.– which might suffer from
significant performance degradation since the beam
selection and precoding are designed separately.

In this paper, we consider the joint design of beam
selection and precoding to maximize the sum rate
of a downlink single-sided lens mmWave MU-MIMO
system with limited RF chains at the base station (BS).
Firstly we formulate the optimization problem into a
tractable form by using the weighted minimum mean
squared error (WMMSE) approach [9]. Then in order
to solve the resulting problem, we propose an efficient
joint beam selection and precoding algorithm based
on the innovative penalty dual decomposition (PDD)
method [10]. Simulation results demonstrate that our
proposed algorithm can achieve near-optimal perfor-
mance when compared to the fully digital precoding
scheme and thus outperform the competing methods.

Notation: In this paper, lower-case and upper-case
boldface letters a and A denote a vector and a matrix,
respectively. Lower-case letter aij means the (i, j)-th
element of matrix A and |a| denotes the amplitude
of scalar a. AH , A−1, A†, Tr(A) and ||A||2 denote
the conjugate transpose, inverse, pseudo-inverse, trace
and frobenius norm of matrix A, respectively; IK is
the K × K identity matrix and E{·} represents the
expectation operation.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a downlink single-sided lens mmWave
MU-MIMO system, where the BS employs Ms anten-
nas and NRF RF chains to simultaneously serve K
spatially distributed users, each equipped with single-
antenna receiver. Note that the number of RF chains
should satisfy NRF ≥ K to guarantee spatial multi-
plexing gain for the K users. Without loss of generality,
we choose NRF = K in this paper.

A. System Model

As shown in Fig 1, the BS transmits K data streams
carrying independent messages, each one intended to978-1-5386-3531-5/17/$31.00 c© 2017 IEEE
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Fig. 1: A mmWave MU-MIMO system with single-

sided lens antenna array.

a specific user. The precoded baseband data vector at
the BS can be expressed as

x = Ps =
K
∑

k=1

pksk, (1)

where s = [s1, s2, . . . , sK ]T , sk is the data symbol
intended for user k with zero mean and normalized
power E{|sk|

2} = 1, and P = [p1,p2, . . . ,pK ] ∈
C

NRF×K is the precoding matrix and pk is the digital
precoding vector for user k. The K×1 received signal
vector y of all K users can be expressed as

y = HHFPs+ n, (2)

in which H ∈ C
Ms×K is the beamspace channel

matrix, F ∈ C
Ms×NRF is the beam selection matrix

whose entries are either 0 or 1, and n ∼ CN (0, σ2IK)
is the K × 1 additive white Gaussian noise (AWGN)
vector. The beamspace channel is developed below.

B. Beamspace Channel Model

The beamspace channel matrix H is obtained from
the spatial MIMO channels by Fourier transformation:

H=[h1,h2, · · · ,hK ]=[Ug1,Ug2, . . . ,UgK ], (3)

where U ∈ C
Ms×Ms is a spatial discrete Fourier trans-

formation (DFT) matrix corresponding to a carefully
designed DLA [6] and gk ∈ C

Ms×1 is the spatial
channel for user k. The DFT matrix U consists of
the array steering vectors of Ms orthogonal directions
(beams) over the entire space, i.e.:

U = [a(ϕ1),a(ϕ2), . . . ,a(ϕMs
)]H , (4)

in which ϕn = 1
Ms

(n− Ms+1
2 ) with n = 1, 2, . . . ,Ms

are the normalized spatial directions (beams) [8] and
a(ϕn) = 1√

Ms
[e−j2πϕni]i∈I is the Ms × 1 array

steering vector, where I = {j − (Ms − 1)/2|j =
0, 1, · · · ,Ms − 1} is an index set of array elements.
The spatial direction is defined as ϕ , d

λsinθ where
θ is the physical direction, λ is the signal wavelength,
and d = λ/2 is the antenna spacing2.

In this work, we employ the widely used Saleh-
Valenzuela channel model for the considered mmWave
system [5]–[8]:

gk = β
(0)
k a(φ

(0)
k ) +

L
∑

l=1

β
(l)
k a(φ

(l)
k ), (5)

where β
(0)
k a(φ

(0)
k ) and β

(l)
k a(φ

(l)
k ) represent the line-

of-sight (LOS) and the l-th non-line-of-sight (NLOS)
channel between the BS and user k, respectively.

2We consider a 2D formulation but extension to 3D is not
difficult, and the channel is known by the BS [8].

Meanwhile, βk represent the complex gains and φk are
the spatial directions of the LOS and NLOS channels.

As we know, the number of dominant scatters in a
mmWave channel is quite limited [1]. Thus, the number
of NLOS components L in (5) is typically much less
than Ms, which means that the beamspace channel
matrix H has a sparse structure.

C. Problem Formulation

Our work concentrates on the joint design of the
digital precoding matrix P and the beam selection
matrix F in order to maximize the downlink sum rate.
The signal-to-interference-plus-noise ratio (SINR) of
user k can be expressed as γk:

γk =
|hH

k Fpk|
2

∑K
i6=k |h

H
k Fpi|2 + σ2

. (6)

Then the sum rate maximization problem can be math-
ematically formulated as

max
F,P

K
∑

k=1

log(1 + γk)

s.t. Tr(PHFHFP ) ≤ Ps,
Ms
∑

i=1

fij = 1,

NRF
∑

j=1

fij ≤ 1,

fij ∈ {0, 1}, ∀(i, j) ∈ S, (7)
where Ps is the transmit power upper bound of the
BS, fij is the (i, j)-th element of F , and S ,

{(i, j)|i = 1, 2, . . . ,Ms, j = 1, 2, . . . , NRF }. The

constraints
∑Ms

i=1 fij = 1 ensure that each RF chain

is connected with one beam, while
∑NRF

j=1 fij ≤ 1
guarantee that each beam is selected for at most one
RF chain. These constraints ensure that NRF beams
are selected to serve all users accurately.

Note that problem (7) is nonconvex and very chal-
lenging due to the beam selection constraints. In the
next section, we propose an efficient joint beam selec-
tion and precoding algorithm to solve (7).

III. THE PROPOSED JOINT DESIGN ALGORITHM

We first use the WMMSE approach to transform
problem (7) into a tractable form. Then we propose an
efficient joint beam selection and precoding algorithm
to solve the equivalently converted problem based on
the PDD method.

A. Reformulation of Problem (7)

Define the mean square error (MSE) of user k as

ek , E{|ŝk − sk|
2}

= |ukh
H
k Fpk|

2 − 2ℜe(ukh
H
k Fpk)

+ 1 + σ2|uk|
2 +

K
∑

i6=k

|ukh
H
k Fpi|

2, (8)

where ŝk = ukyk, uk and yk are the receiver gain and
received signal of user k, respectively.

Let wk > 0 be a weight factor, the problem

min
F,P ,wk,uk

K
∑

k=1

wkek − logwk

s.t. Tr(PHFHFP ) ≤ Ps,

Ms
∑

i=1

fij = 1,

NRF
∑

j=1

fij ≤ 1, fij ∈ {0, 1}, ∀(i, j) ∈ S, (9)
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is equivalent to problem (7), in the sense that the global
optimal solution for the two problems are identical [9].
Note that uk is only applied in (8) to satisfy the inverse
MSE/rate relation as explained in [9].

Hence, the sum rate maximization problem (7) can
be solved via the weighted MSE minimization (9). The
latter problem, which is defined over the parameter
space {F ,P , wk, uk}, is easier to handle. In particular,
optimizing each variable separately while holding the
others fixed amounts to a convex problem that can be
solved easily (e.g., closed-form).

Before proceeding to the derivation of the proposed
algorithm, let us reformulate problem (9) into an
equivalent, yet more tractable form. To this end, we
introduce auxiliary variables {f̂ij} and V subject to

constraints fij = f̂ij , fij(1 − f̂ij) = 0, 0 ≤ f̂ij ≤ 1,
FP = V , Tr(V V H) ≤ Ps. We also rewrite the con-

straint
∑NRF

j=1 fij ≤ 1 as fT
i 1 ≤ 1 with fT

i ∈ C
1×Ms

being the i-th row of F and 1 ∈ C
Ms×1 denoting a

vector whose all elements are 1. Similarly, fij can be
expressed as fT

i bj with bj ∈ C
NRF×1 denoting the j-

th column of INRF
. With these notations, the problem

(9) can be equivalently written as

min
V,P ,wk,uk,fij ,f̂ij

K
∑

k=1

wkek − logwk (10a)

s.t. FP = V ,fT
i bj(1− f̂ij) = 0, (10b)

fT
i bj = f̂ij ,

Ms
∑

i=1

fT
i bj = 1, (10c)

Tr(V V H) ≤ Ps,

NRF
∑

j=1

fT
i bj ≤ 1, (10d)

0 ≤ f̂ij ≤ 1, ∀(i, j) ∈ S. (10e)

In the following, we develop the proposed algorithm
based on the PDD method to solve problem (10).

B. The Proposed PDD-based Algorithm

In this subsection, we propose a PDD based algo-
rithm, which is characterized by embedded double loop
where the inner loop serves to approximately solve
the augmented Lagrangian (AL) subproblem while the
outer loop aims to update the dual variables or penalty
parameter based on the constraint violation. We first
write the AL problem of (10) as follows,

min
V ,P ,fij ,f̂ij ,wk,uk

K
∑

k=1

wkek − logwk

+
1

2ρ

Ms
∑

i=1

NRF
∑

j=1

(fT
i bj(1− f̂ij) + ρλij)

2,

+
1

2ρ

Ms
∑

i=1

NRF
∑

j=1

(fT
i bj − f̂ij + ρλ̂ij)

2,

+
1

2ρ

NRF
∑

j=1

(

Ms
∑

i=1

fT
i bj − 1 + ρµj)

2,

+
1

2ρ
||FP − V + ρξ||22,

s.t. Tr(V V H)≤Ps,f
T
i 1≤1, 0≤ f̂ij≤1, ∀(i, j) ∈ S,

(11)

where {λij}, {λ̂ij}, {µj}, ξ ∈ C
Ms×K and ρ denote

the dual variables associated with the equality con-

straints (10b), (10c) and a penalty factor, respectively.
We address the AL problem (11) in the inner loop
with the block successive upper-bound minimization
(BSUM) method [11] and divide the variables into
five blocks: {uk}, {wk}, {f̂ij ,P }, {V } and {fT

i }.
In the following, we explain the methods to solve the
subproblems for each one of these blocks.

Step 1. We optimize {uk} by fixing the remaining
variables. In this case, (11) simplifies to the uncon-
strained problem:

min
uk

K
∑

k=1

wkek. (12)

By examining the first order optimality condition of
above problem, we obtain the closed-form solution [9]:

uopt
k = ummse

k = J−1
k vH

k hk, (13)

where Jk =
∑K

i=1 h
H
k viv

H
i hk + σ2 and vi is the i-th

column of V .

Step 2. We optimize {wk} by fixing the remaining
variables. Following the approach in Step 1, we obtain
the closed-form solution [9]:

wopt
k = (emmse

k )−1= (1− vH
k hkJ

−1
k hH

k vk)
−1. (14)

Step 3. We optimize {f̂ij ,P } by fixing the remain-

ing variables. The subproblem of optimizing {f̂ij} can
be expressed as

min
f̂ij

1

2ρ
(fT

i bj(1− f̂ij) + ρλij)
2

+
1

2ρ
(fT

i bj − f̂ij + ρλ̂ij)
2

s.t. 0 ≤ f̂ij ≤ 1. (15)

Problem (15) features a scalar quadratic objective func-
tion of f̂ij . We can obtain the solution without con-
straint by enforcing the first order optimality condition
of the objective function:

f̂oc
ij =

f2
ij + fijρλij + fij + ρλ̂ij

1 + f2
ij

. (16)

Recalling that f̂ij satisfies 0 ≤ f̂ij ≤ 1, we can easily

obtain the solution for f̂ij :

f̂opt
ij =











1, 1 ≤ f̂oc
ij ,

f̂oc
ij , 0 < f̂oc

ij < 1,

0, f̂oc
ij ≤ 0.

(17)

Similarly, the subproblem of optimizing {P } can be
stated as

min
P

1

2ρ
||FP − V + ρξ||22. (18)

Since this is a quadratic programming problem without
constraint, we can obtain the following closed-form
solution:

P opt = (FHF )†FH(V − ρξ). (19)

As the variables P and f̂ij are uncoupled in the block,
we should update them simultaneously.

Step 4. We optimize {V } by fixing the remaining
variables. The subproblem of optimizing {V } can be
expressed as

min
V

P1(V ) (20a)

s.t. Tr(V V H) ≤ Ps, (20b)
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where

P1(V ) ,

K
∑

k=1

wk

(

|ukh
H
k V bk|

2−2ℜe(ukh
H
k V bk)

+ 1 + σ2|uk|
2 +

K
∑

i6=k

|ukh
H
k V bi|

2
)

+
1

2ρ
||FP − V + ρξ||22.

(21)
This is a convex quadratic optimization subproblem

with a quadratic constraint. By introducing the La-
grange multiplier λ for the constraint (20b), we define
the Lagrangian function associated with problem (20)
as follows

L(V , λ) , P1(V ) + λ(Tr(V V H)− Ps). (22)

The first order optimality condition of (22) with respect
to V when λ ≥ 0 yields:

V opt =(
K
∑

k=1

wkhku
∗
kukh

H
k +

1

2ρ
I + λI)−1

·
( 1

2ρ
(FP + ρξ) +

K
∑

k=1

wku
∗
khkb

H
k

)

. (23)

If the solution V with λ = 0 satisfies the constraint
(20b), the optimal λ is zero. Otherwise we can obtain
solution of λ through the slackness condition:

Tr(V V H)− Ps = 0. (24)

We can find λ by solving the problem (24) with the
bisection method [12].

Step 5. We optimize {fT
i } by fixing the remaining

variables. The subproblem of optimizing {fT
i } can be

given by

min
fT
i

P2(f
T
i )

s.t. fT
i 1 ≤ 1, i = 1, 2, . . . ,Ms, (25)

where

P2(f
T
i ) ,

1

2ρ

Ms
∑

i=1

NRF
∑

j=1

(fT
i bj(1− f̂ij) + ρλij)

2

+
1

2ρ

Ms
∑

i=1

NRF
∑

j=1

(fT
i bj − f̂ij + ρλ̂ij)

2

+
1

2ρ

NRF
∑

j=1

(

Ms
∑

i=1

fT
i bj − 1 + ρµj)

2

+
1

2ρ
||FP − V + ρξ||22. (26)

We find that the subproblems for each fT
i are

independent. Each subproblem is convex with an affine
constraint. Hence, similar to (20), the first order opti-
mality condition of the Lagrangian function of (25)
with respect to fT

i when θi ≥ 0 yields:

f
opt
i =

(

3I +

NRF
∑

j=1

(f̂2
ij − 2f̂ij)bjb

T
j + ℜe{PPH}

)−1

·
(

−ℜe{ci} − ρθi1−
NRF
∑

j=1

(

ρλij(1− f̂ij)

− (ρλ̂ij − f̂ij)− (

Ms
∑

k 6=i

fT
k bj + ρµj − 1)

)

bj
)

.

(27)

where fi = {fT
i }T , θi ≥ 0 is the Lagrangian

multiplier, C , P (ρξ − V )H and ci denotes the i-th
column of C. If the solution fT

i with θi = 0 satisfies
the constraint in (25), the optimal θi is zero. Otherwise
we can obtain θi from the slackness condition:

fT
i 1 = 1. (28)

We can find θi by using the bisection method.

Besides, the dual variables {λij , λ̂ij , µj , ξ}
m can be

updated by the following expressions:

λm+1
ij =λm

ij+
1

ρm
(fT

i bj(1−f̂ij)), ∀(i, j) ∈ S, (29a)

λ̂m+1
ij = λ̂m

ij+
1

ρm
(fT

i bj−f̂ij), ∀(i, j) ∈ S, (29b)

µm+1
j =µm

j +
1

ρm
(

Ms
∑

i=1

(fT
i bj−1)), ∀(i, j) ∈ S, (29c)

ξm+1=ξm+
1

ρm
(FP − V ). (29d)

where m denotes the outer iteration number. We define
the constraint violation h as:

h = max
∀(i,j)∈S

{

|fT
i bj(1− f̂ij)|, |f

T
i bj − f̂ij |,

|
∑Ms

i=1(f
T
i bj − 1)|, ||FP − V ||2.

}

.

(30)

The proposed joint design algorithm based on PDD
method for problem (10) is summarized in Table I. Fol-
lowing [10], it can be shown that every limit point of
the sequence generated by our algorithm is a stationary
point of problem (10).

TABLE I: The proposed PDD based algorithm

1 Initialize dual variables {λij , λ̂ij , µj , ξ}
0, primal

variables {V ,P ,fT
i , f̂ij , wk, uk}

0,0, ǫ, Nmax, ρ0 >

0, τ0, c and* η0 = τ
1/6
0 . Set m = 0, n = 0.

2 Repeat

2.1 Repeat

2.1.1 Update {uk}
m,n+1 by (13) with fixed

{V ,P ,fT
i , f̂ij , wk}

m,n.
2.1.2 Update {wk}

m,n+1 by (14) with fixed

{V ,P ,fT
i , f̂ij}

m,n and {uk}
m,n+1.

2.1.3 Update {f̂ij ,P }m,n+1 by (17), (19) with
fixed {V ,fT

i }m,n and {uk, wk}
m,n+1.

2.1.4 Update {V }m,n+1 by (23) with fixed

{fT
i }m,n, and {P , f̂ij , uk, wk}

m,n+1.
2.1.5 Update {fT

i }m,n+1 by (27) with fixed

{V ,P , f̂ij , uk, wk}
m,n+1 and set n = n+ 1.

2.2 Until n > Nmax

2.3 Assign the solution of the primal variables from
(m,n) to (m+ 1, n).

2.4 Calculate the constraint violation h by (30).
2.5 if h ≤ ηm then update dual variables by (29),
2.6 else set ρm+1 = cρm end if.

2.7 Set* τm+1 = 0.6τm, ηm+1 = τ
1/6
m+1 and m =

m+1.

3 Until h < ǫ.

* Here we set Nmax, ρ, c, η, and τ empirically.
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IV. SIMULATION RESULTS

This section presents simulation results of the pro-
posed PDD based joint beam selection and precoding
algorithm where the BS is equipped with a DLA
consisting of Ms = 128 antennas and NRF = 16
RF chains, in order to serve K = 16 users. The
channel model parameters of user k are set according
to [6]: 1) one LOS link with L = 2 NLOS links; 2)

φ
(0)
k and φ

(l)
k obey the uniform independent identical

distribution (i.i.d.) within [− 1
2 ,

1
2 ]. 3) β

(0)
k ∼ CN (0, 1),

β
(l)
k ∼ CN (0, 10−1) with l = 1, 2. For the PDD based

algorithm, we set the initial penalty factor ρ0 = 10−2

and the control parameter c = 0.1. In addition, we
set τ0 = 1 and the maximum inner iteration number
Nmax = 100 which is large enough to observe
convergence.
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Fig. 2: Convergence properties of the PDD based

algorithm (SNR = 25dB).
We choose SNR = 25dB to present the convergence

properties of the PDD based algorithm without loss of
generality in Fig. 2. The achievable sum rate converges
rapidly in less than 5 iterations, and the constraint
violation h reduces to a threshold ǫ = 10−7 in less
than 200 iterations, which means that the solution has
met equality constraints of problem (10).
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Fig. 3: Achievable sum rate comparison.
Fig. 3 compares the sum rate of the proposed joint

design algorithm with the IA-BS [8], and MM-BS [5]–
[7] schemes averaged over 100 channel realizations.
Meanwhile we simulate the fully digital precoding as
a benchmark. We observe that the proposed algorithm

achieves a near-optimal performance when compared
to the fully digital precoding scheme and thus outper-
form the competing methods. This demonstrates the

merits of the proposed joint design algorithm for the
beam selection and digital precoding.

V. CONCLUSION

In this paper, we have considered the joint design
of beam selection and precoding for the downlink
of a single-sided lens mmWave MU-MIMO system.
We reformulated the sum rate maximization problem
into a tractable form by using the WMMSE approach.
We then proposed an efficient joint beam selection
and precoding algorithm based on the PDD method.
Simulation results demonstrate that our proposed al-
gorithm can achieve near-optimal performance when
compared to the fully digital precoding scheme and
thus outperform the competing methods. The proposed
algorithm exploited specific structure present in lens
antenna array systems and could be used for any
joint beam selection and precoding rate maximization
problem.
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